cover
Contact Name
Risky Ayu Kristanti
Contact Email
ayukristanti@gmail.com
Phone
+6282153870439
Journal Mail Official
gisa@tecnoscientifica.com
Editorial Address
Editorial Office - Green Intelligent Systems and Applications Jalan Asem Baris Raya No 116 Kebon Baru, Tebet, Jakarta Selatan Jakarta 12830, Indonesia
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Green Intelligent Systems and Applications
Published by Tecno Scientifica
ISSN : -     EISSN : 28091116     DOI : https://doi.org/10.53623/gisa.v2i1
The journal is intended to provide a platform for research communities from different disciplines to disseminate, exchange and communicate all aspects of green technologies and intelligent systems. The topics of this journal include, but are not limited to: Green communication systems: 5G and 6G communication systems, power harvesting, cognitive radio, cognitive networks, signal processing for communication, delay tolerant networks, smart grid communications, power-line communications, antenna and wave propagation, THz technology. Green computing: high performance cloud computing, computing for sustainability, CPSS, computer vision, distributed computing, software engineering, bioinformatics, semantics web. Cyber security: cryptography, digital forensics, mobile security, cloud security. Internet of Things (IoT): sensors, nanotechnology applications, Agriculture 5.0, Society 5.0. Intelligent systems: artificial intelligence, machine learning, deep learning, big data analytics, neural networks. Smart grid: distributed grid, renewable energy in smart grid, optimized power delivery, artificial intelligence in smart grid, smart grid control and operation.
Articles 22 Documents
Android Based College App Using Flutter Dart Kavitha Marimuthu; Arunkumar Panneerselvam; Senthilkumar Selvaraj; Lakshmi Praba Venkatesan; Vetriselvi Sivaganesan
Green Intelligent Systems and Applications Vol. 3 Iss. 2 (2023)
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/gisa.v3i2.269

Abstract

In today's world, communication and information sharing between teachers and students have increasingly shifted to online platforms such as Google Classroom, Gmail, Google Forms, WhatsApp, and more. To address the diverse needs of educational institutions, we developed an app that supports all devices, including mobile phones, laptops, and tablets. The Android app for mobile and tablet websites supports all devices seamlessly. This app provides comprehensive information on attendance, examination schedules, lecture notes, fee details, event notifications, and online tests, catering to all the requirements of the institution. We developed this app using the latest technology, including Flutter and Dart, with Firebase integration. Additionally, we created a web application that is easily accessible via desktops. This website, along with the app, is connected to the same Firebase server, ensuring synchronized data access. The institute has taken a step further by developing its own Android application and website to enhance efficient communication with its students. These platforms are exclusively accessible and available to authorized users associated with the institute, ensuring privacy and security.
Application of Convolutional Neural Network (CNN) Method in Fluctuations Pattern Melinda Melinda; Yunidar Yunidar; Nur Afny Catur Andryani
Green Intelligent Systems and Applications Vol. 3 Iss. 2 (2023)
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/gisa.v3i2.270

Abstract

In the acquisition of amplitude data, the inaccuracy of a signal with the occurrence of an unstable peak value of the amplitude in the data is called a fluctuation. This study uses High-High Fluctuation (HHF) signal data from the acquisition of Multi-Spectral Capacitive Sensors (MSCS) with Hydrogen Dioxide (H2O) and Hydrogen Dioxide (H2O) objects mixed with Sodium Hydroxide (NaOH) that have been organized into a matrix form. The data acquisition results in previous studies have several parts that are difficult to distinguish with the naked eye. The method used in this study applies the CNN method for image recognition of signal fluctuations of type HHF from H2O and H2O mixed with NaOH, using the architecture known as AlexNet. Then, the H2O and H2O data groups mixed with NaOH were grouped into training data groups of 280 image data for each data type, and 70 image data for test data for both groups. During the training stage, the number of epochs used is 20. However, by the time the number of epochs reaches 15, the accuracy rate is already high, reaching 98%. Furthermore, at the testing stage, the CNN program can correctly recognize the entire 70 image data for both materials, achieving perfect recognition for the total amount of the two materials.

Page 3 of 3 | Total Record : 22