cover
Contact Name
Asril Pramutadi Andi Mustari
Contact Email
IJPhysicsITB@gmail.com
Phone
+6222-2500834
Journal Mail Official
ijp-journal@itb.ac.id
Editorial Address
Prodi Sarjana dan Pascasarjana Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Bandung Gedung Fisika, Jalan Ganesa 10, Bandung 40132, INDONESIA
Location
Kota bandung,
Jawa barat
INDONESIA
Indonesian Journal of Physics (IJP)
ISSN : 23018151     EISSN : 29870828     DOI : https://doi.org/10.5614/itb.ijp
Indonesian Journal of Physics welcomes full research articles in the area of Sciences and Engineering from the following subject areas: Physics, Mathematics, Astronomy, Mechanical Engineering, Civil and Structural Engineering, Chemical Engineering, Electrical Engineering, Geotechnical Engineering, Engineering Science, Environmental Science, Materials Science, and Earth-Surface Processes. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
Articles 5 Documents
Search results for , issue "Vol 32 No 2 (2021): Vol 32 No 2 (2021)" : 5 Documents clear
Effect of Dimensionality on The Electronic Properties of SnSe: A Density Functional Theory Study Fatimah Arofiati Noor; Erik Bhekti Yutomo; Toto Winata
Indonesian Journal of Physics Vol 32 No 2 (2021): Vol 32 No 2 (2021)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (609.315 KB) | DOI: 10.5614/itb.ijp.2021.32.2.2

Abstract

This study investigated the structural and electronic properties of bulk, bilayer, and monolayer SnSe using the density functional theory (DFT) method. We succeeded in calculating the bandgap and identifying accurately the transformation of the band structure from bulk to monolayer systems using generalized gradient approximation. An increase in the lattice parameter a and a decrease in the lattice parameter b were observed when the bulk dimensions were reduced to a monolayer. The reduction of van der Waals interactions when the dimensions of a system are reduced is the main factor that causes changes in lattice parameters. The indirect bandgap of bulk SnSe (0.56 eV, 0.3∆→0.7Σ) becomes wider in the monolayer system (0.94 eV, 0.2∆→0.8Σ). Bandgap widening is predicted due to the emergence of the quantum confinement effect in low-dimensional systems. Furthermore, we found the formation of a quasi-degenerate minimum conduction band in the monolayer SnSe. With the formation of these bands, we predict the monolayer SnSe will have better thermoelectric properties than the bulk or bilayer system. This study provides an in-depth understanding of the electronic structure of SnSe and its correlation to thermoelectric properties.
The Effect of Niobium and Rubidium Doping on the Energy Band Gap of a Lithium Tantalate (LiTaO3) Thin Film Agus Ismangil; Fatimah Arofiati Noor; Toto Winata
Indonesian Journal of Physics Vol 32 No 2 (2021): Vol 32 No 2 (2021)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (420.255 KB) | DOI: 10.5614/itb.ijp.2021.32.2.1

Abstract

Chemical solution deposition (CSD) is a technique for making a film by keeping synthetic arrangements on the outer layer of the substrate. The outcomes show that the band gap energy of the LiTaO3 film is 1 eV. Electrons are more effectively invigorated to the valence band than to the conduction band on the grounds that the energy required is not excessively huge. Niobium-doped LiTaO3 film has a band gap energy of 1.15 eV. A large amount of energy is needed for electrons to be energized from the valence band to the conduction band. The rubidium-doped LiTaO3 film has a band gap energy of 1.30 eV.
MODIFIED CORRELATION WEIGHT K-NEAREST NEIGHBOR CLASSIFIER USING TRAINING DATASET CLEANING METHOD Efraim Kurniawan Dairo Kette
Indonesian Journal of Physics Vol 32 No 2 (2021): Vol 32 No 2 (2021)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (281.127 KB) | DOI: 10.5614/itb.ijp.2021.32.2.5

Abstract

In pattern recognition, the k-Nearest Neighbor (kNN) algorithm is the simplest non-parametric algorithm. Due to its simplicity, the model cases and the quality of the training data itself usually influence kNN algorithm classification performance. Therefore, this article proposes a sparse correlation weight model, combined with the Training Data Set Cleaning (TDC) method by Classification Ability Ranking (CAR) called the CAR classification method based on Coefficient-Weighted kNN (CAR-CWKNN) to improve kNN classifier performance. Correlation weight in Sparse Representation (SR) has been proven can increase classification accuracy. The SR can show the 'neighborhood' structure of the data, which is why it is very suitable for classification based on the Nearest Neighbor. The Classification Ability (CA) function is applied to classify the best training sample data based on rank in the cleaning stage. The Leave One Out (LV1) concept in the CA works by cleaning data that is considered likely to have the wrong classification results from the original training data, thereby reducing the influence of the training sample data quality on the kNN classification performance. The results of experiments with four public UCI data sets related to classification problems show that the CAR-CWKNN method provides better performance in terms of accuracy.
Einstein-Klein-Gordon System in Higher Dimensional Mirda Prisma Wijayanto; Fiki Taufik Akbar Sobar; Bobby Eka Gunara
Indonesian Journal of Physics Vol 32 No 2 (2021): Vol 32 No 2 (2021)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (195.785 KB) | DOI: 10.5614/itb.ijp.2021.32.2.4

Abstract

In this present work, we study the Einstein equation coupled with the nonlinear Klein-Gordon equation. We obtain Ricci tensor, scalar curvature, and Einstein equation of the Einstein-Klein-Gordon system in higher dimensional. If we put D=4, our formulations reduce to the four dimensional Einstein-Klein-Gordon system.
Scalar-Torsion Theories in Four Dimensional Static Spacetimes Mulyanto .; Fiki Taufik Akbar; Bobby Eka Gunara
Indonesian Journal of Physics Vol 32 No 2 (2021): Vol 32 No 2 (2021)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (176.309 KB) | DOI: 10.5614/itb.ijp.2021.32.2.3

Abstract

In this paper, we consider a class of static spacetimes scalar-torsion theories in four dimensioanal static spacetimes with the scalar potential turned on. We discover that the 2-dimensional submanifold must admit constant triplet structures, one of which is the torsion scalar. This indicates that these equations of motion can be reduced to a single highly non-linear ordinary differential equation known as the master equation. Then, we show that there are no exact solution of the scalar-torsion theory in four dimensions considering the Sinh-Gordon potential.

Page 1 of 1 | Total Record : 5


Filter by Year

2021 2021


Filter By Issues
All Issue Vol 34 No 1 (2023): vol 34 no 1 2023 Vol 33 No 2 (2022): Vol 33 No 2 (2022) Vol 33 No 1 (2022): Vol 33 No 1 (2022) Vol 32 No 2 (2021): Vol 32 No 2 (2021) Vol 32 No 1 (2021): Vol 32 No 1 (2021) Vol 31 No 2 (2020): Vol 31 No 2 (2020) Vol 31 No 1 (2020): Vol 31 No 1 (2020) Vol 30 No 2 (2019): Vol 30 No 2 (2019) Vol 30 No 1 (2019): Vol 30 No 1 (2019) Vol 27 No 1 (2016): Vol 27 No 1 (2016), July 2016 Vol 26 No 2 (2015): Vol. 26 No. 2, December 2015 Vol 26 No 1 (2015): Vol. 26 No. 1, July 2015 Vol 23 No 1 (2012): Vol. 23 No. 1, July 2012 Vol 22 No 4 (2011): Vol. 22 No. 4, October 2011 Vol 22 No 3 (2011): Vol. 22 No. 3, July 2011 Vol 22 No 2 (2011): Vol. 22 No. 2, April 2011 Vol 22 No 1 (2011): Vol. 22 No. 1, January 2011 Vol 21 No 4 (2010): Vol. 21 No. 4, October 2010 Vol 21 No 3 (2010): Vol. 21 No. 3, July 2010 Vol 21 No 2 (2010): Vol. 21 No. 2, April 2010 Vol 21 No 1 (2010): Vol. 21 No. 1, January 2010 Vol 20 No 4 (2009): Vol. 20 No. 4, October 2009 Vol 20 No 3 (2009): Vol. 20 No. 3, July 2009 Vol 20 No 2 (2009): Vol. 20 No. 2, April 2009 Vol 20 No 1 (2009): Vol. 20 No. 1, January 2009 Vol 19 No 4 (2008): Vol. 19 No. 4, October 2008 Vol 19 No 3 (2008): Vol. 19 No. 3, July 2008 Vol 19 No 2 (2008): Vol. 19 No. 2, April 2008 Vol 19 No 1 (2008): Vol. 19 No. 1, January 2008 Vol 18 No 4 (2007): Vol. 18 No. 4, October 2007 Vol 18 No 3 (2007): Vol. 18 No. 3 July 2007 Vol 18 No 2 (2007): Vol. 18 No. 2 April 2007 Vol 18 No 1 (2007): Vol. 18 No. 1, January 2007 Vol 17 No 4 (2006): Vol. 17 No. 4, October 2006 Vol 17 No 3 (2006): Vol. 17 No. 3, July 2006 Vol 17 No 2 (2006): Vol. 17 No. 2, April 2006 Vol 17 No 1 (2006): Vol. 17 No. 1, January 2006 Vol 16 No 4 (2005): Vol. 16 No. 4, October 2005 Vol 16 No 3 (2005): Vol. 16 No. 3, July 2005 Vol 16 No 2 (2005): Vol. 16 No. 2, April 2005 Vol 16 No 1 (2005): Vol. 16 No.1, January 2005 Vol 15 No 4 (2004): Vol. 15 No. 4, October 2004 Vol 15 No 3 (2004): Vol. 15 No. 3, July 2004 Vol 15 No 2 (2004): Vol. 15 No.2, April 2004 Vol 15 No 1 (2004): Vol. 15 No.1, January 2004 Vol 14 No 4 (2003): IJP Vol. 14 No. 4, October 2003 Vol 14 No 3 (2003): Vol. 14 No.2, Juli 2003 Vol 14 No 2 (2003): Vol. 14 No.2, April 2003 Vol 14 No 1 (2003): Vol. 14 No.1, Januari 2003 Vol 13 No 4 (2002): Vol. 13 No.4, October 2002 Vol 13 No 3 (2002): Vol. 13 No.3, Juli 2002 Vol 13 No 2 (2002): Vol. 13 No.2, April 2002 Vol 13 No 1 (2002): Vol. 13 No.1, Januari 2002 Vol 12 No 4 (2001): Vol. 12 No.4, Oktober 2001 Vol 12 No 3 (2001): Vol. 12 No.3, Juli 2001 Vol 12 No 2 (2001): Vol. 12 No. 2, April 2001 Vol 12 No 1 (2001): Vol. 12 No. 1, Januari 2001 More Issue