cover
Contact Name
H Hadiyanto
Contact Email
hadiyanto@che.undip.ac.id
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
CBIORE office, Jl. Prof. Soedarto, SH-Tembalang Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.61435/ijred.xxx.xxx
The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, and it provides a link between scientists, engineers, economist, societies and other practitioners. International Journal of Renewable Energy Development is currently being indexed in Scopus database and has a listing and ranking in the SJR (SCImago Journal and Country Rank), ESCI (Clarivate Analytics), CNKI Scholar as well as accredited in SINTA 1 (First grade category journal) by The Directorate General of Higher Education, The Ministry of Education, Culture, Research and Technology, The Republic of Indonesia under a decree No 200/M/KPT/2020. The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass and Bioenergy, Wind energy technology, Material science and technology, Low energy architecture, Geothermal energy, Wave and tidal energy, Hydro power, Hydrogen production technology, Energy policy, Socio-economic on energy, Energy efficiency, planning and management, Life cycle assessment. The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of developments of renewable energy.
Articles 500 Documents
Reducing pollution and economic sustainability policies from the use of renewable energy in European Union nations Walid Ali; Nizar Raissi
International Journal of Renewable Energy Development Accepted Articles
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2024.53205

Abstract

A major challenge facing humans in the 21st century is how to strike a balance between the mitigation of environmental degradation and the achievement of sustainable economic growth. On this note, this investigation applies an autoregressive distributed lag (ARDL) methodology to a panel data of 28 European Union (EU-28) countries over the period 2000-2020. The study confirms the existence of positive and significant long-run nexus among environmental sustainability, renewable energy consumption and economic growth in the EU-28 countries. In addition, empirical results indicate that real gross fixed capital formation, carbon emissions and other environmental factors are principal determinants of long-run growth in the EU. Using Dumitrescu and Hurlin (2012) Granger non-causality in heterogeneous panel, results show long-run bidirectional causal relationships among renewable energy consumption, economic growth and other growth determinants. Based on these results, infer that the exploitation of renewable energy sources in the EU-28 countries is a reliable pathway toward environmental pollution mitigation. This indicates that achieving the sustainable development goals (SDGs) by the year 2030 through renewable energy consumption and carbon emission mitigation is very much achievable in the EU-28 countries, and should also be adopted by all countries as an effective global policy.
Modelling the Kinetics of Biogas Production from Mesophilic Anaerobic Co-Digestion of Cow Dung with Plantain Peels Ganiyu Kayode Latinwo; Samuel Enahoro Agarry
International Journal of Renewable Energy Development Vol 4, No 1 (2015): February 2015
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.4.1.55-63

Abstract

This work investigated the effect of plantain peels as co-substrate in the anaerobic digestion of cow dung for efficient and high biogas production. The biogas experiments were carried out in two different 5 L anaerobic digesters and incubated for 40 days at ambient mesophilic temperatures (28 oC to 34 °C). The results showed that co-digestion of cow dung with plantain peels as co-substrate reduced start-up time for biogas generation and increased biogas yield by 18% as compared to cow dung alone. Peak biogas production was obtained for both digesters at pH of 6.7 and 6.9 as well as temperature of 29 and 30oC, respectively. Modelling study revealed that exponential plot simulated better in both ascending and descending limb than the linear plot the biogas production rates in biogas production from cow dung co-digested with plantain peels and cow dung alone, respectively. Logistic growth model and modified Gompertz plot showed better correlation of cumulative biogas production than exponential rise to maximum plot. These results show that biogas production can be enhanced efficiently through co-digestion process.
Waste-Based Second-Generation Bioethanol: A Solution for Future Energy Crisis Yasindra Sandamini Chandrasiri; W. M. Lakshika Iroshani Weerasinghe; D. A. Tharindu Madusanka; Pathmalal M. Manage
International Journal of Renewable Energy Development Vol 11, No 1 (2022): February 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.41774

Abstract

The demand for more environmentally friendly alternative renewable fuels is growing as fossil fuel resources are depleting significantly. Consequently, bioethanol has attracted interest as a potentially viable fuel. The key steps in second-generation bioethanol production include pretreatment, saccharification, and fermentation. The present study employed simultaneous saccharification and fermentation (SSF) of cellulose through bacterial pathways to generate second-generation bioethanol utilizing corncobs and paper waste as lignocellulosic biomass. Mechanical and chemical pretreatments were applied to both biomasses. Then, two bacterial strains, Bacillus sp. and Norcadiopsis sp., hydrolysed the pretreated biomass and fermented it along with Achromobacter sp., which was isolated and characterized from a previous study. Bioethanol production followed by 72 h of biomass hydrolysis employing Bacillus sp. and Norcadiopsis sp., and then 72 h of fermentation using Achromobacter sp. Using solid phase micro extraction combined with GCMS the ethanol content was quantified. SSF of alkaline pretreated paper waste hydrolysed by Bacillus sp. following the fermentation by Achromobacter sp. showed the maximum ethanol percentage of 0.734±0.154. Alkaline pretreated corncobs hydrolyzed by Norcadiopsis sp. yielded the lowest ethanol percentage of 0.155±0.154. The results of the study revealed that paper waste is the preferred feedstock for generating second-generation bioethanol. To study the possible use of ethanol-diesel blends as an alternative biofuel E2, E5, E7, and E10 blend emulsions were prepared mixing commercially available diesel with ethanol. The evaluated physico-chemical characteristics of the ethanol-diesel emulsions fulfilled the Ceypetco requirements except for the flashpoint revealing that the lower ethanol-diesel blends are a promising alternative to transport fuels. As a result, the current study suggests that second generation bioethanol could be used as a renewable energy source to help alleviate the energy crisis..
Monitoring the performances of a maximum power point tracking photovoltaic (MPPT PV) pumping system driven by a brushless direct current (BLDC) motor Ba Abdellahi; Mohamed El Mamy Mohamed Mahmoud; Ne Ould Dah; Amadou Diakité; Aroudam El Hassen; Chighali Ehssein
International Journal of Renewable Energy Development Vol 8, No 2 (2019): July 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.2.193-201

Abstract

Nowadays, water pumping systems powered by solar-cell generators are one of the most important applications. It’s a promising alternative to conventional electricity and diesel based pumping systems, especially for applications like community water supplies and irrigation. This study presents a monitored standalone photovoltaic solar direct pumping system using the Maximum Power Point Tracking (MPPT) algorithm to optimize the solar photovoltaic conversion efficiency. It was done at ISET-Rosso in Mauritania. The experimental setup based on Lorentz PS1200C-SJ8-5 pumping system consists of four photovoltaic (PV) panels, inverter PS1200, BLDC motor, centrifugal pump and a storage tank. The system has been monitored, in order to determine the relationship between: the DC power produced by the PV generator and the solar radiation; the water flow and the DC power and by then the relationship between the water flow and the solar radiation. The effect of ambient temperature and solar radiation on the PV panels was also done under Matlab/Simulink environment and compared to the experimental results. ©2019. CBIORE-IJRED. All rights reserved
Optimization of a Management Algorithm for an Innovative System of Automatic Switching between Two Photovoltaic and Wind Turbine Modes for an Ecological Production of Green Energy Yahya Lahlou; Abdelghani Hajji; Mohammed Aggour
International Journal of Renewable Energy Development Vol 12, No 1 (2023): January 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.47137

Abstract

Today, renewable energy and energy efficiency are key to limiting global warming and preventing the dangerous effects of climate change. The biggest problem with conventional solar and wind turbine systems is the intermittency of electrical power generation. Even if these two energy sources can be complementary, the space occupied by these hybrid systems remains very important. This work proposes an improved management algorithm for a patented transformable photovoltaic-wind system, which mainly uses two flexible photovoltaic panels which are automatically deformed by an electromechanical system from the planar shape to the semi-cylindrical shape of the Savonius wind turbine blades. When weather conditions change, this system switches to eco-friendly photovoltaic (PV) or wind turbine (WT) mode, allowing a good total power generation from two solar power sources or wind turbine power. The contribution brought for this work relates to the realization and the improvement of the management algorithm to determine a better change to the mode PV or the mode WT. The operation test was simulated in 8760 hours for the year 2021. This developed algorithm allows several theoretical calculations of the power produced from solar radiation and wind speed data, thereafter the algorithm compare and determines the overall power and selects the optimal PV or WT mode. In this study, the overall power generated by the invented system produces more electricity per hour, the power Pt increases by 75.55% compared to the power Pwt, and also the power Pt increases by 68.15% compared to Pvp power.
The Impact of Hydraulic Retention Time on the Biomethane Production from Palm Oil Mill Effluent (POME) in Two-Stage Anaerobic Fluidized Bed Reactor Laily Isna Ramadhani; Sri Ismiyati Damayanti; Hanifrahmawan Sudibyo; Muhammad Mufti Azis; Wiratni Budhijanto
International Journal of Renewable Energy Development Vol 10, No 1 (2021): February 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.20639

Abstract

Indonesia is currently the most significant crude palm oil (CPO) producer in the world. In the production ofCPO, 0.7m3 of Palm Oil Mill Effluent (POME) is emitted as the wastewater for every ton of fresh fruit bunches processed in the palm oil mill.With the increasing amount of CPO production, an effective POME treatment system is urgently required to prevent severe environmental damage. The high organic content in the POME is a potential substrate forbio-methane production. The biomethane production is carried out by two groups of microbes, i.e., acidogenic and methanogenic microbes. Each group of bacteria performs optimally at different optimum conditions. To optimize the biomethane production, POME was treated sequentially by separating the acidogenic and methanogenic microbes into two stages of anaerobic fluidized bed reactors (AFBR). The steps were optimized differently according to the favorable conditions of each group of bacteria. Although perfect separation cannot be achieved, this study showed that pH control could split the domination of the bacteria, i.e., the first stage (maintained at pH 4-5) was dominated by the acidogenic microbes and the second stage (kept neutral) was governed by methanogens. In addition to the pH control, natural zeolitewas added as microbial immobilization media in the AFBR to improve the performance of the microorganisms, especially in preventing microbial wash out at short hydraulic retention time (HRT). This study was focused on the understanding of the effect of HRT on the performance of steady-state continuous AFBR. The first stage as the acidogenic reactorwas rununder acidic conditions (pH 4-5) at five different HRTs. In comparison, the second stage as the methanogenic reactorwasrun under the neutral condition at four different HRTs. In this work,short HRT (5 days) resulted in better performance in both acidogenic AFBR and methanogenic AFBR. The immobilization media was hence essential to reduce the risk of washout at such a short HRT. The two-stage system also resulted in quite a high percentage of soluble chemical oxygen demand (sCOD) removal, which was as much as 96.06%sCOD.
Evaluating wind energy potential in Gorgan–Iran using two methods of Weibull distribution function Mehdi Hashemi-Tilehnoee; Dayan Babayani; Masoud Khaleghi
International Journal of Renewable Energy Development Vol 5, No 1 (2016): February 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.1.43-48

Abstract

In this study, wind energy characteristics of the, a city in northeast of Iran, measured at 10m height in 2014. The Gorgan airport one hour recorded data extrapolated to 50m height. The data have been statistically analyzed hourly, daily, monthly, seasonally and annually to determine the wind power potential. Weibull distribution function has been used to determine the wind power density and then the potential energy. Standard deviation method and power density method are the methods used to calculate the scaling and shaping parameters of the Weibull distribution function. The annual mean wind power calculated by the standard deviation method and the power density method is 38.98w/m2 and 41.32w/m2, respectively. By comparing the results concluded that the power density method is a better method than the standard deviation method. In addition, Gorgan wind energy potentiality categorized into class 1. So is unsuitable to utilize large wind energy turbine. Article History: Received November 21, 2015; Received in revised form January 15, 2016; Accepted February 10, 2016; Available onlineHow to Cite This Article: Babayani, D., Khaleghi, M., Tashakor, S., and Hashemi-Tilehnoee.,M. (2016) Evaluating wind energy potential in Gorgan–Iran using two methods of Weibull distribution function. Int. Journal of Renewable Energy Development, 5(1), 43-48.http://dx.doi.org/10.14710/ijred.5.1.43-48 
A Brief Study on the Implementation of Helical Cross-Flow Hydrokinetic Turbines for Small Scale Power Generation in the Indian SHP Sector Jayaram Vijayan; Bavanish Balac Retnam
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.45249

Abstract

This article addresses the simulation and experiments performed on a Gorlov Helical Turbine (GHT) by altering the index of revolution of its helical blades. Gorlov Helical Turbine is a hydrokinetic turbine that generates energy from the perennial/tidal source. The paper serves a two-fold purpose: parametric optimisation of Gorlov Helical Turbine with respect to the index of revolution and viability of installing the turbines in river creeks. Nine models of turbines with a diameter of 0.600 m and a height of 0.600 m were generated with different indices of revolution and then subjected to simulation studies. A significant rise in the output torque of the turbine was not observed with the various indices of revolution, even as the probability of finding a section at every azimuthal position is likely to rise. Gavasheli's solidity ratio formula was used to formulate an expression for the output power. The output power as per analytical formulation is 1.11 W, which is of the order of output power obtained through simulation (0.951 W). The studies suggest that 0.25 remains the optimum value for the index of revolution of the helical blades. A model with 0.25 as the index of revolution was fabricated and tested at a river creek. The results were found to agree with the simulations accounting for the losses. The study results could encourage setting up hydrokinetic turbines in river creeks, thereby increasing the grid capacity of SHPs in India.
Synthesis and Characterization of Physically Mixed V2O5.CaO as Bifunctional Catalyst for Methyl Ester Production from Waste Cooking Oil Mulyatun Mulyatun; Istadi Istadi; Widayat Widayat
International Journal of Renewable Energy Development Vol 12, No 2 (2023): March 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.51047

Abstract

Synthesis of the solid bifunctional vanadium-calcium mixed oxides catalyst was accomplished by application of a simple physical mixing approach. In this work, we compared the catalytic activity of CaO and 2%V2O5.CaO catalyst. Various characterization methods, such as X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared (FTIR), BET surface area, and temperature-programmed desorption (TPD) of CO2 and NH3, were involved in studying the newly synthesized catalysts. The presence of CaO, CaCO3, and Ca(OH)2 compounds in the synthesized catalyst were detected by XRD and FTIR analysis. The existence of 2% V2O5 on the CaO catalyst surface was demonstrated by XRF analysis. From TPD-NH3, TPD-CO2, and BET surface area analysis, it was known that the 2% V2O5-CaO catalyst had a higher total number of acid-base sites and surface area than the CaO catalyst. In the fatty acid methyl esters (FAME) production from waste cooking oil (WCO) with higher free fatty acid (FFA), CaO could only catalyze the transesterification reaction. In contrast, 2%V2O5-CaO could successfully catalyze both the esterification of FFA and the transesterification of triglyceride (TG) simultaneously in a one-step reaction process. Thus, these results prove that 2%V2O5.CaO can act as a bifunctional catalyst in the production of biodiesel from WCO. Moreover, the synthesized 2%V2O5.CaO catalyst could achieve a maximum FAME yield of 51.30% under mild reaction conditions, including a 20:1 methanol to oil molar ratio, 60 °C reaction temperature, 1 wt% of catalyst loading, and 3 hours of reaction time.
First Aspect of Conventional Power System Assessment for High Wind Power Plants Penetration A Merzic; M. Music; M Rascic
International Journal of Renewable Energy Development Vol 1, No 3 (2012): October 2012
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.1.3.107-113

Abstract

Most power systems in underdeveloped and developing countries are based on conventional power plants, mainly "slow-response" thermal power plants and a certain number of hydro power plants; characterized by inflexible generating portfolios and traditionally designed to meet own electricity needs. Taking into account operational capabilities of conventional power systems, their development planning will face problems with integration of notable amounts of installed capacities in wind power plants (WPP). This is what highlights the purpose of this work and in that sense, here, possible variations of simulated output power from WPP in the 10 minute and hourly time interval, which need to be balanced, are investigated, presented and discussed. Comparative calculations for the amount of installed power in WPP that can be integrated into a certain power system, according to available secondary balancing power amounts, in case of concentrated and dispersed future WPP are given. The stated has been done using a part of the power system of Bosnia and Herzegovina. In the considered example, by planned geographically distributed WPP construction, even up to cca. 74% more in installed power of WPP can be integrated into the power system than in case of geographically concentrated WPP construction, for the same available amount of (secondary) balancing power. These calculations have shown a significant benefit of planned, geographically distributed WPP construction, as an important recommendation for the development planning of conventional power systems, with limited balancing options. Keywords: balancing reserves,  geographical dispersion, output power  variations

Page 1 of 50 | Total Record : 500


Filter by Year

2012 2024