cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Atom Indonesia Journal
ISSN : -     EISSN : -     DOI : -
Core Subject : Science,
Exist for publishing the results of research and development in nuclear science and technology Starting for 2010 Atom Indonesia published three times a year in April, August, and December The scope of this journal covers experimental and analytical research in all areas of nuclear science and technology. including nuclear physics, reactor physics, radioactive waste treatment, fuel element development, radioisotopes and radio pharmaceutical engineering, nuclear and radiation safety, neutron scattering, material science and technology, as well as utilization of isotopes and radiation in agriculture, industry, health and environment.
Arjuna Subject : -
Articles 13 Documents
Search results for , issue "Vol 47, No 3 (2021): December 2021" : 13 Documents clear
Dosimetric Assessment of Routine X-Ray Examination at Selected Health Clinics in Perak Using Commercialized Optically-Stimulated Luminescence Dosimeter (OSLD) M. T. Saidin; A. A. Rahman; H. H. Harun; Y. M. Radzi; C. Anam; Z. Kayun
Atom Indonesia Vol 47, No 3 (2021): December 2021
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/aij.2021.1110

Abstract

This study aims to compare entrance surface dose (ESD) values measured with nanoDot Al2O3:C optically-stimulated luminescence dosimeter (OSLD) and guidance level set under the second national dose survey which utilized old-version LiF:Mg,Ti thermoluminescence dosimeter (TLD). In this study, we conducted a dosimetric assessment for posteroanterior chest X-ray (PA-CXR) examinations performed at various community clinics in Perak, Malaysia. These clinics were selected as they were excluded from the first and second national dose survey conducted in Malaysia in 1993-1995 and 2005-2009, respectively. The ESD is obtained by mounting the OSLD on the surface of polymethyl methacrylate (PMMA) slabs. The PMMA slabs were then exposed to X-ray based on the current practice of respective clinics. The results show that the 3rd quartile of ESDs ranged from 0.180 mGy to 0.229 mGy which is less than the recommended guidance level of the second national dose survey by 77 %. ESD measured using OSLD was found to be lower than the guidance values recommended from the second national dose survey. The finding showed a good competency of the radiographer to optimize radiological practice specifically in routine X-ray examination.
Acknowledgement Atom Indonesia Vol 47 No 3 ack47no3 ack47no3
Atom Indonesia Vol 47, No 3 (2021): December 2021
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/aij.2021.1206

Abstract

Implementation of Beam Matching Concept for the New Installed Elekta Precise Treatment System Medical LINACs in Indonesia O. A. Firmansyah; A. F. Firmansyah; S. I. Sunaryati; M. M. Putri; A. R. Setiadi; O. A. Akbar; V. Arif; C. Amelia
Atom Indonesia Vol 47, No 3 (2021): December 2021
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/aij.2021.1041

Abstract

A concept of radiation beam matching of some medical linear accelerators (LINACs) that have identical characteristics of the models, radiation quality, and multileaf collimator features may be implemented as long as the manufacturer provides complete specifications so that a Treatment Planning System (TPS) can be used for many beam-matched LINACs. This paper describes a preliminary study on the implementation of the beam matching concept for five units Elekta Precise Treatment System LINACs that have recently been installed in Indonesia. The beam matching criteria were based on the percentage depth dose (PDD) and beam profile for photon and electron beams. Dosimetry measurements were carried out by using an SNC 125 ionization chamber of 0.125 cm3 in volume, PTW Pinpoint 3D of  0.016 cm3 in volume, and PTW Farmer Chamber of 0.6 cm3 in volume. The results indicated that the PDD10 of 6 and 10 MV photon beams among installed five units LINACs have excellent compatibility each others with a maximum deviation of less than 0.4 %, while the maximum deviation for dose depth of 80 % (R80) for the electron beams with nominal energies of 4, 6, 8, 10, 15 and 18 MeV is 1 mm. The measurement results for the flatness profile were less than 6 %, and symmetry profiles were less than 3 %. It also outlines the determination of the absorbed dose to water under reference conditions. The results of the calibration of output doses show that the absorbed dose in the water was 1 cGy ≈ 1 MU. The data obtained from measurements for each LINAC conform with the requirements of the beam matching process set by the manufacturer.
Analysis of 137Cs Radionuclide Content in Sediment in Musi Watershed Using Gamma Spectrometer and its Affecting Factors T. A. Jaya; A. Mara; G. F. Amri
Atom Indonesia Vol 47, No 3 (2021): December 2021
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/aij.2021.1130

Abstract

The concentration of the radionuclide 137Cs on sediment in watershed in Palembang has been analyzed. This study aims to determine the influence of sampling location and the water quality indicators of water pH, sediment pH, conductivity, turbidity, and sediment type on the concentration of 137Cs and to determine the distribution pattern of 137Cs in sediments. Sampling was conducted at seven stations spaced approximately 5 km apart, placed from the western end to the eastern end  of the Musi river segment located within Palembang City.Sediment samples were prepared and their 137Cs contents were measured with gamma spectrometry. The results showed that their 137Cs concentrations ranged from below MDC (minimum detectable concentration) to 1.51 Bq/kg. This was within the 1×103 Bq/kg limit set by the quality standard. The varied and very low concentrations of 137Cs are thought to have originated from global fallout. The location point of sampling affects the concentration of radionuclide 137Cs while the characteristics of water quality are do not. The 137Cs concentration spread pattern in Musi sediment is influenced by tidal currents and river morphology.
Model Comparison of Passive Compact-Molten Salt Reactor Neutronic Design Using MCNP6 and Serpent-2 R. A. P. Dwijayanto; M. R. Oktavian; M. Y. A. Putra; A. W. Harto
Atom Indonesia Vol 47, No 3 (2021): December 2021
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/aij.2021.1122

Abstract

Passive Compact Molten Salt Reactor (PCMSR) is a thermal breeder molten salt reactor (MSR) developed in Universitas Gadjah Mada, Indonesia, run in thorium fuel cycle. Its design was initially developed using deterministic code SRAC2006 but has never been compared with other codes. This paper attempts to compare PCMSR neutronic design using Monte Carlo codes MCNP6 and Serpent-2 with ENDF B/VII.0 continuous neutron cross-section library. The reactor was run in a pure thorium fuel cycle with lithium fluoride as its carrier salt. The analyzed parameters were effective multiplication factor (keff), temperature coefficient of reactivity (TCR), void coefficient of reactivity (VCR), and conversion ratio (CR). The result shows that there are several important discrepancies between the original calculation and this research. The Monte Carlo calculations implied that PCMSR core was able to be critical using lower fissile concentration than previously designed, but failed to reach CR above unity. While the TCR value was found to be negative, the VCR value was positive up until the 10 % void fraction. The PCMSR core suffered from ineffective neutron moderation and high neutron leakage. These findings imply that the previous PCMSR neutronic design is inaccurate. For PCMSR to be able to operate as a thermal breeder MSR, geometrical modifications must be performed to improve neutron moderation and reduce neutron leakage.
Natural Radioactivity and the Evaluation of Related Radiological Risks in Concrete Used in Prizren District, Kosovo M. Qafleshi; M. K. Xhixha; G. Nafezi; D. Kryeziu; D. Qafleshi
Atom Indonesia Vol 47, No 3 (2021): December 2021
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/aij.2021.1149

Abstract

This study aims to investigate the natural radioactivity levels in concrete made of Portland cement and used in Prizren district, Republic of Kosovo. The activity concentrations of 40K, 226Ra and 232Th were determined by gamma-ray spectroscopy technique with High Purity Germanium (HPGe) detector. The activity concentrations of 40K, 226Ra, and 232Th were found to be 15.4-28.4 Bq kg-1, 4.3-5.9 Bq kg-1 and 2.0-4.1 Bq kg-1, respectively. These results were used to calculate the activity concentration index as recommended by the Basic Safety Standard of Council Directive 2013/59/EURATOM for the safe use of building material. Kosovo must comply with this recommendation in the framework of legislative harmonization with the European Union. The activity concentration index was found to be lower than the reference level of unity (I=0.05), corresponding to an annual effective dose rate of AED=0.05 mSv y-1. The concentration of radionuclides and radiological hazard parameters for concrete investigated in this study were compared with respective results found in literature from different countries. These results show very low activity concentrations, indicating that concrete used in Prizren, Kosovo, does not pose any significant risk due to its use as building material.
Characterization of The Heat Transfer on Spray Quenching for Different Material Properties S Sabariman; E. Specht
Atom Indonesia Vol 47, No 3 (2021): December 2021
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/aij.2021.947

Abstract

A broad range of water spray applications as a means of two-phase cooling scheme has encouraged researches in the thermal management system to support safety and process efficiency in industries. In the application of above saturation temperature, the cooling process follows the boiling curve where the dissipated heat flux is figured out as a function of the wall temperature. Knowledge on constructing the boiling curve is an essential part in order to define the moving boundary, and boundary value problems occur in metal cooling process analysis involving heat transfer and phase change. The objective of the research was to characterize the boiling parameters on different materials in the regime of film boiling, transition boiling, and nucleate boiling as the basis for its boiling curve construction. To explain the influence of material properties, this work is featuring, firstly, the calculated vapor film thickness in film boiling regime by promoting self-developed analytical model of single droplet and, secondly, the calculated boiling width which indicates a strong combination of surface temperature and heat flux observed as the boiling phenomena. This is obtained by calculating the propagation of wetting front and 100 oC points. This experimental work employed a volumetric spray flux of 4.2, 10 and 13.7 kg/m2s to cool a hot metal samples of aluminum alloy AA6082 and nickel heated up to 560 °C. An infrared camera was used to record the temperature drop over time. Heat flux calculation follows the numerical procedure according to 1D energy balance model. Calculated vapor film thickness explains why the HTC tends to increase with the decrease of the surface temperature. Leidenfrost and Departure from Nucleate Boiling (DNB) temperatures are found to be inversely proportional to the heat penetration coefficient of the metal while maximum heat flux and boiling width increase with it.
Monte Carlo Simulation-Based BEAMnrc Code of a 6 MV Photon Beam Produced by a Linear Accelerator (LINAC) R. Sapundani; R. Ekawati; K. M. Wibowo
Atom Indonesia Vol 47, No 3 (2021): December 2021
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/aij.2021.1046

Abstract

In radiotherapy, high energy ionizing radiation, such as X-rays, gamma rays and electron beams,is used. The dose in the tissue is often approached with the dose in the medium of the body which is 80 % of human soft tissue. It is often difficult to determine the dose because the interaction of materials in a medium is very random. Measurement is also quite difficult because there are almost no detectors that are tissue equivalent. Measurement using an ion chamber requires a lot of correction to obtain a dose in the tissue, which is done using phantom and not directly in humans. This research aimed to compare the absorbed dose between modelling using Monte Carlo simulation and experiments.  The simulation of dose distribution produced by a 6 MV medical linear accelerator has been performed using BEAMnrc code running on Linux-based 2 processor system arranged in parallel.BEAMnrc was used to model and simulate the linac head with an SSD of 100 cm and Field size of10x10 cm2. A phase-space file is obtained as input to a DOSXYnrc code to produce Percent Depth Dose (PDD) in water and polymethyl methacrylate (PMMA) phantoms. New particles formed (electrons: 0.2 %, photon: 0.17 %; and positron: 0.08 %) were far from the contamination threshold of 2 %. The range of the correction factor of the depth of a maximum dose compared to the experimental data was 0.04-0.15.
Cover Atom Indonesia Vol 47 No 3 cvr47no3 cvr47no3
Atom Indonesia Vol 47, No 3 (2021): December 2021
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/aij.2021.1204

Abstract

Theoretical Inspecting of 211At Radionuclide via Coupled-Channel Model for Fusion Reaction of Stable Nuclei Z. M. Cinan; T. Başkan; B. Erol; A. H. Yılmaz
Atom Indonesia Vol 47, No 3 (2021): December 2021
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/aij.2021.1115

Abstract

This work has been carried out to obtain and inspect of 211At radionuclide through fusion reaction. Cross-sections for fusion reaction have been calculated with different interaction combinations and excitations for 19F + 192Os and 18O + 193Ir  reactions. All calculations have been performed on NRV Knowledge Base, CCFULL code, and Wong’s Formula. Firstly, we assigned reaction parameter values taking into account the compatibility with the experimental data 19F + 192Os reaction. Afterward, to enrich studies on 211At radionuclide, we proposed 18O + 193Ir reaction which did not have experimental data in the literature with the method and parameter values we determined. We examined the effects of phonon excitations in projectile and target nuclei on fusion cross sections and barrier distributions. With our research, we showed that the coupled channel model and the calculation codes used to explain the fusion cross-section data and barrier distributions well. This research sheds light on the importance of analyzing important medical radionuclides such as 211At by heavy-ion fusion reactions and encourages new researches.

Page 1 of 2 | Total Record : 13


Filter by Year

2021 2021


Filter By Issues
All Issue VOL 49, NO 2 (2023): AUGUST 2023 VOL 49, NO 1 (2023): APRIL 2023 Vol 48, No 3 (2022): December 2022 Vol 48, No 2 (2022): August 2022 Vol 48, No 1 (2022): April 2022 Vol 47, No 3 (2021): December 2021 Vol 47, No 2 (2021): August 2021 Vol 47, No 1 (2021): April 2021 Vol 46, No 3 (2020): December 2020 Vol 46, No 2 (2020): August 2020 Vol 46, No 1 (2020): April 2020 Vol 45, No 3 (2019): December 2019 Vol 45, No 2 (2019): August 2019 Vol 45, No 1 (2019): April 2019 Vol 44, No 3 (2018): December 2018 Vol 44, No 2 (2018): August 2018 Vol 44, No 1 (2018): April 2018 Vol 43, No 3 (2017): December 2017 Vol 43, No 2 (2017): August 2017 Vol 43, No 1 (2017): April 2017 Vol 42, No 3 (2016): December 2016 Vol 42, No 2 (2016): August 2016 Vol 42, No 1 (2016): April 2016 Vol 41, No 3 (2015): December 2015 Vol 41, No 2 (2015): August 2015 Vol 41, No 1 (2015): April 2015 Vol 40, No 3 (2014): December 2014 Vol 40, No 2 (2014): August 2014 Vol 40, No 1 (2014): April 2014 Vol 39, No 3 (2013): December 2013 Vol 39, No 2 (2013): August 2013 Vol 39, No 1 (2013): April 2013 Vol 38, No 3 (2012): December 2012 Vol 38, No 2 (2012): August 2012 Vol 38, No 1 (2012): April 2012 Vol 37, No 3 (2011): December 2011 Vol 37, No 2 (2011): August 2011 Vol 37, No 1 (2011): April 2011 Vol 36, No 3 (2010): December 2010 Vol 36, No 2 (2010): August 2010 Vol 36, No 1 (2010): April 2010 Vol 35, No 2 (2009): July 2009 Vol 35, No 1 (2009): January 2009 Vol 34, No 2 (2008): July 2008 Vol 34, No 1 (2008): January 2008 Vol 33, No 2 (2007): July 2007 Vol 33, No 1 (2007): January 2007 Vol 32, No 2 (2006): July 2006 Vol 32, No 1 (2006): January 2006 Vol 31, No 2 (2005): July 2005 Vol 31, No 1 (2005): January 2005 Vol 30, No 2 (2004): July 2004 Vol 30, No 1 (2004): January 2004 More Issue