cover
Contact Name
Ivan Ferdian
Contact Email
ivan.ijgbg@gmail.com
Phone
-
Journal Mail Official
ivan.ijgbg@gmail.com
Editorial Address
-
Location
Kota bandung,
Jawa barat
INDONESIA
IJOG : Indonesian Journal on Geoscience
ISSN : 23559314     EISSN : 23559306     DOI : -
Core Subject : Science,
The spirit to improve the journal to be more credible is increasing, and in 2012 it invited earth scientists in East and Southeast Asia as well as some western countries to join the journal for the editor positions in the Indonesia Journal of Geology. This is also to realize our present goal to internationalize the journal, The Indonesian Journal on Geoscience, which is open for papers of geology, geophysics, geochemistry, geodetics, geography, and soil science. This new born journal is expected to be published three times a year. As an international publication, of course it must all be written in an international language, in this case English. This adds difficulties to the effort to obtain good papers in English to publish although the credit points that an author will get are much higher.
Arjuna Subject : -
Articles 10 Documents
Search results for , issue "Vol 3, No 2 (2016)" : 10 Documents clear
Volcanostratigraphic Sequences of Kebo-Butak Formation at Bayat Geological Field Complex, Central Java Province and Yogyakarta Special Province, Indonesia Mulyaningsih, Sri
Indonesian Journal on Geoscience Vol 3, No 2 (2016)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.3.2.77-94

Abstract

DOI:10.17014/ijog.3.2.77-94Bayat Complex is usually used as a work field for students of geology and other geosciences. The study area is located in the southern part of the Bayat Complex. Administratively, it belongs to Central Java Province and Yogyakarta Special Province. The lithology of Bayat is very complex, composed of various kinds of igneous, sedimentary, metamorphic, and volcanic rocks. Most of previous researchers interpreted Bayat as a melange complex constructed within a subduction zone. Kebo-Butak is one of formations that forms the Bayat field complex. The formation is composed of basalt, layers of pumice, tuff, shale, and carbonaceous tuff. Most of them are known as volcanic rocks. These imply that volcanic activities are more probable to construct the geology of Bayat rather than the subducted melange complex. The geological mapping, supported by geomorphology, petrology, stratigraphy, and geological structures, had been conducted in a comprehensive manner using the deduction-induction method. The research encounters basalt, black pumice, tuff with basaltic glasses fragments, zeolite, argilic clay, as well as feldspathic- and pumice tuff. Petrographically, the basalt is composed of labradorite, olivine, clinopyroxene, and volcanic glass. Black pumice and tuff contain prismatic clinopyroxene, granular olivine, and volcanic glasses. Feldspathic tuff and pumice tuff are crystal vitric tuff due to more abundant feldspar, quartz, and amphibole than volcanic glass. Zeolite comprises chlorite and altered glasses as deep sea altered volcanic rocks. The geologic structure is very complex, the major structures are normal faults with pyrite in it. There were two deep submarine paleovolcanoes namely Tegalrejo and Baturagung. The first paleovolcano erupted effusively producing basaltic sequence, while the second one erupted explosively ejecting feldspathic-rich pyroclastic material. The two paleovolcanoes erupted simultaneously and repeatedly.
Surface Rupture and Geotechnical Features of The July 2, 2013 Tanah Gayo Earthquake Daryono, Mudrik Rahmawan; Tohari, Adrin
Indonesian Journal on Geoscience Vol 3, No 2 (2016)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.3.2.95-105

Abstract

DOI:10.17014/ijog.3.2.95-105An assessment of surface rupture and collateral ground failures can help to evaluate the impact of future earthquakes. This paper presents the results of a field survey conducted to map the surface rupture and geotechnical phenomena associated with the ground shaking during the July 2, 2013 earthquakes in Tanah Gayo Highland. The objectives of this survey are to document and to characterize the surface ruptures as well as to identify types of earthquake-induced ground failures. Results of the survey identified four best sites of possible surface rupture. Two locations are obvious surface ruptures that can be traced on primary topographic feature of the active fault segment from the north to the south, crossing Pantan Terong Hill. The fault segment has a total mapped length of 19 km, with WNW trending zone and a dextral rupture offset. The ground shaking also resulted in landslides and liquefaction in areas underlain by very fine-grained tuffaceous sands. Based on the field survey, it can be concluded that the newly defined active fault segment, the Pantan Terong segment, is likely the segment that ruptured at the July 2, 2013 Tanah Gayo earthquake. Due to the soil types and unstable rocky slopes in the hilly Central Aceh region, large-scale landslides are primary risks during an earthquake event in this region.
Petrogenesis of Rinjani Post-1257-Caldera-Forming-Eruption Lava Flows Rachmat, Heryadi; Rosana, Mega Fatimah; Wirakusumah, Ade Djumarma; Jabbar, Gamma Abdul
Indonesian Journal on Geoscience Vol 3, No 2 (2016)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.3.2.107-126

Abstract

DOI:10.17014/ijog.3.2.107-126After the catastrophic 1257 caldera-forming eruption, a new chapter of Old Rinjani volcanic activity beganwith the appearance of Rombongan and Barujari Volcanoes within the caldera. However, no published petrogeneticstudy focuses mainly on these products. The Rombongan eruption in 1944 and Barujari eruptions in pre-1944, 1966,1994, 2004, and 2009 produced basaltic andesite pyroclastic materials and lava flows. A total of thirty-one sampleswere analyzed, including six samples for each period of eruption except from 2004 (only one sample). The sampleswere used for petrography, whole-rock geochemistry, and trace and rare earth element analyses. The Rombonganand Barujari lavas are composed of calc-alkaline and high K calc-alkaline porphyritic basaltic andesite. The magmashows narrow variation of SiO2 content that implies small changes during its generation. The magma that formedRombongan and Barujari lavas is island-arc alkaline basalt. Generally, data show that the rocks are enriched in LargeIon Lithophile Elements (LILE: K, Rb, Ba, Sr, and Ba) and depleted in High Field Strength Elements (HFSE: Y, Ti,and Nb) which are typically a suite from a subduction zone. The pattern shows a medium enrichment in Light REEand relatively depleted in Heavy REE. The processes are dominantly controlled by fractional crystallization andmagma mixing. All of the Barujari and Rombongan lavas would have been produced by the same source of magmawith little variation in composition caused by host rock filter process. New flux of magma would likely have occurredfrom pre-1944 until 2009 period that indicates slightly decrease and increase of SiO2 content. The Rombongan andBarujari lava generations show an arc magma differentiation trend.
Seismic Interpretation of the Nam Con Son Basin and its Implication for the Tectonic Evolution Tuan, Nguyen Quang; Tri, Tran Van
Indonesian Journal on Geoscience Vol 3, No 2 (2016)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.3.2.127-137

Abstract

DOI:10.17014/ijog.3.2.127-137The Nam Con Son Basin covering an area of circa 110,000 km2 is characterized by complex tectonic settings of the basin which has not fully been understood. Multiple faults allowed favourable migration passageways for hydrocarbons to go in and out of traps. Despite a large amount of newly acquired seismic and well data there is no significant update on the tectonic evolution and history of the basin development. In this study, the vast amount of seismic and well data were integrated and reinterpreted to define the key structural events in the Nam Con Son Basin. The results show that the basin has undergone two extentional phases. The first N - S extensional phase terminated at around 30 M.a. forming E - W trending grabens which are complicated by multiple half grabens filled by Lower Oligocene sediments. These grabens were reactivated during the second NW - SE extension (Middle Miocene), that resulted from the progressive propagation of NE-SW listric fault from the middle part of the grabens to the margins, and the large scale building up of roll-over structure. Further to the SW, the faults of the second extentional phase turn to NNE-SSW and ultimately N - S in the SW edge of the basin. Most of the fault systems were inactive by Upper Miocene except for the N - S fault system which is still active until recent time.
An Overview on the Possibility of Scandium and REE Occurrence in Sulawesi, Indonesia Maulana, Adi; Sanematsu, Kenzo; Sakakibara, Masayuki
Indonesian Journal on Geoscience Vol 3, No 2 (2016)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.3.2.139-147

Abstract

DOI:10.17014/ijog.3.2.139-147The development in modern-high technology application is growing rapidly, resulting in the constant supply of critical metal and rare earth elements (REE). Currently, resources of these elements are restricted and new source of these elements need to be discovered accordingly. Scandium (Sc) as one of critical metals is an important metal for electrolyte of solid oxide fuel cells and other advance technology. In addition, REE are the important elements in the use of permanent magnets and rechargeable batteries. This manuscript reports an overview on the possibility of scandium and rare earth element occurrences in Sulawesi. Sc is concentrated in limonite layers in Soroako ultramafic rocks as a result of Fe3+ site substitution of mafic minerals (pyroxene, amphibole, etc.) during a laterization process. REE are enriched in association with clay minerals in B horizon from heavily weathered granitic rocks in Palu and Masamba, suggesting the possibility of ion-adsorption style mineralization. The lateritic soil of the ultramafic rocks and the weathered crusts of the granitic rocks in Sulawesi could be the potential sources of scandium and rare earth elements, respectively.
Volcanostratigraphic Sequences of Kebo-Butak Formation at Bayat Geological Field Complex, Central Java Province and Yogyakarta Special Province, Indonesia Sri Mulyaningsih
Indonesian Journal on Geoscience Vol 3, No 2 (2016)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (9544.238 KB) | DOI: 10.17014/ijog.3.2.77-94

Abstract

DOI:10.17014/ijog.3.2.77-94Bayat Complex is usually used as a work field for students of geology and other geosciences. The study area is located in the southern part of the Bayat Complex. Administratively, it belongs to Central Java Province and Yogyakarta Special Province. The lithology of Bayat is very complex, composed of various kinds of igneous, sedimentary, metamorphic, and volcanic rocks. Most of previous researchers interpreted Bayat as a melange complex constructed within a subduction zone. Kebo-Butak is one of formations that forms the Bayat field complex. The formation is composed of basalt, layers of pumice, tuff, shale, and carbonaceous tuff. Most of them are known as volcanic rocks. These imply that volcanic activities are more probable to construct the geology of Bayat rather than the subducted melange complex. The geological mapping, supported by geomorphology, petrology, stratigraphy, and geological structures, had been conducted in a comprehensive manner using the deduction-induction method. The research encounters basalt, black pumice, tuff with basaltic glasses fragments, zeolite, argilic clay, as well as feldspathic- and pumice tuff. Petrographically, the basalt is composed of labradorite, olivine, clinopyroxene, and volcanic glass. Black pumice and tuff contain prismatic clinopyroxene, granular olivine, and volcanic glasses. Feldspathic tuff and pumice tuff are crystal vitric tuff due to more abundant feldspar, quartz, and amphibole than volcanic glass. Zeolite comprises chlorite and altered glasses as deep sea altered volcanic rocks. The geologic structure is very complex, the major structures are normal faults with pyrite in it. There were two deep submarine paleovolcanoes namely Tegalrejo and Baturagung. The first paleovolcano erupted effusively producing basaltic sequence, while the second one erupted explosively ejecting feldspathic-rich pyroclastic material. The two paleovolcanoes erupted simultaneously and repeatedly.
Surface Rupture and Geotechnical Features of The July 2, 2013 Tanah Gayo Earthquake Mudrik Rahmawan Daryono; Adrin Tohari
Indonesian Journal on Geoscience Vol 3, No 2 (2016)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4056.678 KB) | DOI: 10.17014/ijog.3.2.95-105

Abstract

DOI:10.17014/ijog.3.2.95-105An assessment of surface rupture and collateral ground failures can help to evaluate the impact of future earthquakes. This paper presents the results of a field survey conducted to map the surface rupture and geotechnical phenomena associated with the ground shaking during the July 2, 2013 earthquakes in Tanah Gayo Highland. The objectives of this survey are to document and to characterize the surface ruptures as well as to identify types of earthquake-induced ground failures. Results of the survey identified four best sites of possible surface rupture. Two locations are obvious surface ruptures that can be traced on primary topographic feature of the active fault segment from the north to the south, crossing Pantan Terong Hill. The fault segment has a total mapped length of 19 km, with WNW trending zone and a dextral rupture offset. The ground shaking also resulted in landslides and liquefaction in areas underlain by very fine-grained tuffaceous sands. Based on the field survey, it can be concluded that the newly defined active fault segment, the Pantan Terong segment, is likely the segment that ruptured at the July 2, 2013 Tanah Gayo earthquake. Due to the soil types and unstable rocky slopes in the hilly Central Aceh region, large-scale landslides are primary risks during an earthquake event in this region.
Petrogenesis of Rinjani Post-1257-Caldera-Forming-Eruption Lava Flows Heryadi Rachmat; Mega Fatimah Rosana; Ade Djumarma Wirakusumah; Gamma Abdul Jabbar
Indonesian Journal on Geoscience Vol 3, No 2 (2016)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2691.244 KB) | DOI: 10.17014/ijog.3.2.107-126

Abstract

DOI:10.17014/ijog.3.2.107-126After the catastrophic 1257 caldera-forming eruption, a new chapter of Old Rinjani volcanic activity beganwith the appearance of Rombongan and Barujari Volcanoes within the caldera. However, no published petrogeneticstudy focuses mainly on these products. The Rombongan eruption in 1944 and Barujari eruptions in pre-1944, 1966,1994, 2004, and 2009 produced basaltic andesite pyroclastic materials and lava flows. A total of thirty-one sampleswere analyzed, including six samples for each period of eruption except from 2004 (only one sample). The sampleswere used for petrography, whole-rock geochemistry, and trace and rare earth element analyses. The Rombonganand Barujari lavas are composed of calc-alkaline and high K calc-alkaline porphyritic basaltic andesite. The magmashows narrow variation of SiO2 content that implies small changes during its generation. The magma that formedRombongan and Barujari lavas is island-arc alkaline basalt. Generally, data show that the rocks are enriched in LargeIon Lithophile Elements (LILE: K, Rb, Ba, Sr, and Ba) and depleted in High Field Strength Elements (HFSE: Y, Ti,and Nb) which are typically a suite from a subduction zone. The pattern shows a medium enrichment in Light REEand relatively depleted in Heavy REE. The processes are dominantly controlled by fractional crystallization andmagma mixing. All of the Barujari and Rombongan lavas would have been produced by the same source of magmawith little variation in composition caused by host rock filter process. New flux of magma would likely have occurredfrom pre-1944 until 2009 period that indicates slightly decrease and increase of SiO2 content. The Rombongan andBarujari lava generations show an arc magma differentiation trend.
Seismic Interpretation of the Nam Con Son Basin and its Implication for the Tectonic Evolution Nguyen Quang Tuan; Tran Van Tri
Indonesian Journal on Geoscience Vol 3, No 2 (2016)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (9181.945 KB) | DOI: 10.17014/ijog.3.2.127-137

Abstract

DOI:10.17014/ijog.3.2.127-137The Nam Con Son Basin covering an area of circa 110,000 km2 is characterized by complex tectonic settings of the basin which has not fully been understood. Multiple faults allowed favourable migration passageways for hydrocarbons to go in and out of traps. Despite a large amount of newly acquired seismic and well data there is no significant update on the tectonic evolution and history of the basin development. In this study, the vast amount of seismic and well data were integrated and reinterpreted to define the key structural events in the Nam Con Son Basin. The results show that the basin has undergone two extentional phases. The first N - S extensional phase terminated at around 30 M.a. forming E - W trending grabens which are complicated by multiple half grabens filled by Lower Oligocene sediments. These grabens were reactivated during the second NW - SE extension (Middle Miocene), that resulted from the progressive propagation of NE-SW listric fault from the middle part of the grabens to the margins, and the large scale building up of roll-over structure. Further to the SW, the faults of the second extentional phase turn to NNE-SSW and ultimately N - S in the SW edge of the basin. Most of the fault systems were inactive by Upper Miocene except for the N - S fault system which is still active until recent time.
An Overview on the Possibility of Scandium and REE Occurrence in Sulawesi, Indonesia Adi Maulana; Kenzo Sanematsu; Masayuki Sakakibara
Indonesian Journal on Geoscience Vol 3, No 2 (2016)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6108.456 KB) | DOI: 10.17014/ijog.3.2.139-147

Abstract

DOI:10.17014/ijog.3.2.139-147The development in modern-high technology application is growing rapidly, resulting in the constant supply of critical metal and rare earth elements (REE). Currently, resources of these elements are restricted and new source of these elements need to be discovered accordingly. Scandium (Sc) as one of critical metals is an important metal for electrolyte of solid oxide fuel cells and other advance technology. In addition, REE are the important elements in the use of permanent magnets and rechargeable batteries. This manuscript reports an overview on the possibility of scandium and rare earth element occurrences in Sulawesi. Sc is concentrated in limonite layers in Soroako ultramafic rocks as a result of Fe3+ site substitution of mafic minerals (pyroxene, amphibole, etc.) during a laterization process. REE are enriched in association with clay minerals in B horizon from heavily weathered granitic rocks in Palu and Masamba, suggesting the possibility of ion-adsorption style mineralization. The lateritic soil of the ultramafic rocks and the weathered crusts of the granitic rocks in Sulawesi could be the potential sources of scandium and rare earth elements, respectively.

Page 1 of 1 | Total Record : 10


Filter by Year

2016 2016


Filter By Issues
All Issue Vol 10, No 2 (2023): in-press Vol 10, No 1 (2023) Vol. 10 No. 1 (2023) Vol 9, No 3 (2022) Vol 9, No 2 (2022) Vol. 9 No. 2 (2022) Vol 9, No 1 (2022) Vol 8, No 3 (2021) Vol. 8 No. 3 (2021) Vol. 8 No. 2 (2021) Vol 8, No 2 (2021) Vol 8, No 1 (2021) Vol 7, No 3 (2020) Vol 7, No 2 (2020) Vol 7, No 1 (2020) Vol 6, No 3 (2019): in-press Vol 6, No 3 (2019) Vol 6, No 2 (2019) Vol 6, No 2 (2019) Vol 6, No 1 (2019) Vol 6, No 1 (2019) Vol 5, No 3 (2018) Vol 5, No 3 (2018) Vol 5, No 2 (2018) Vol 5, No 2 (2018) Vol 5, No 1 (2018) Vol. 5 No. 1 (2018) Vol 5, No 1 (2018) Vol 4, No 3 (2017) Vol 4, No 3 (2017) Vol 4, No 2 (2017) Vol 4, No 2 (2017) Vol 4, No 1 (2017) Vol 4, No 1 (2017) Vol 3, No 3 (2016) Vol 3, No 3 (2016) Vol 3, No 2 (2016) Vol 3, No 2 (2016) Vol 3, No 1 (2016) Vol 3, No 1 (2016): in-press Vol 2, No 3 (2015) Vol 2, No 3 (2015) Vol 2, No 2 (2015) Vol 2, No 2 (2015) Vol 2, No 1 (2015) Vol 2, No 1 (2015) Vol 1, No 3 (2014) Vol 1, No 3 (2014) Vol 1, No 2 (2014) Vol 1, No 2 (2014) Vol 1, No 1 (2014) Vol 1, No 1 (2014) Vol 8, No 4 (2013) Vol 8, No 4 (2013) Vol 8, No 3 (2013) Vol 8, No 3 (2013) Vol 8, No 2 (2013) Vol 8, No 2 (2013) Vol 8, No 1 (2013) Vol 8, No 1 (2013) Vol 7, No 4 (2012) Vol 7, No 4 (2012) Vol 7, No 3 (2012) Vol 7, No 3 (2012) Vol 7, No 2 (2012) Vol 7, No 2 (2012) Vol 7, No 1 (2012) Vol 7, No 1 (2012) Vol 6, No 4 (2011) Vol 6, No 4 (2011) Vol 6, No 3 (2011) Vol 6, No 3 (2011) Vol 6, No 2 (2011) Vol 6, No 2 (2011) Vol 6, No 1 (2011) Vol 6, No 1 (2011) Vol 5, No 4 (2010) Vol 5, No 4 (2010) Vol 5, No 3 (2010) Vol 5, No 3 (2010) Vol 5, No 2 (2010) Vol 5, No 2 (2010) Vol 5, No 1 (2010) Vol 5, No 1 (2010) Vol 4, No 4 (2009) Vol 4, No 4 (2009) Vol 4, No 3 (2009) Vol 4, No 3 (2009) Vol 4, No 2 (2009) Vol 4, No 2 (2009) Vol 4, No 1 (2009) Vol 4, No 1 (2009) Vol 3, No 4 (2008) Vol 3, No 4 (2008) Vol 3, No 3 (2008) Vol 3, No 3 (2008) Vol 3, No 2 (2008) Vol 3, No 2 (2008) Vol 3, No 1 (2008) Vol 3, No 1 (2008) Vol 2, No 4 (2007) Vol 2, No 4 (2007) Vol 2, No 3 (2007) Vol 2, No 3 (2007) Vol 2, No 2 (2007) Vol 2, No 2 (2007) Vol 2, No 1 (2007) Vol 2, No 1 (2007) Vol 1, No 4 (2006) Vol 1, No 4 (2006) Vol 1, No 3 (2006) Vol 1, No 3 (2006) Vol 1, No 2 (2006) Vol 1, No 2 (2006) Vol 1, No 1 (2006) Vol 1, No 1 (2006) More Issue