Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Bahan Alam Terbarukan

ADSORPTION OF NICKEL IN NICKEL SULPHATE SOLUTION (NISO4) BY LAPINDO MUD Sa'diyah, Khalimatus; Syarwani, Muchamad; Hadiantoro, Sigit
Jurnal Bahan Alam Terbarukan Vol 6, No 1 (2017): June 2017 [Nationally Accredited]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v6i1.7963

Abstract

This research has been carried out to produce adsorbent from Lapindo mud through various activation process, to adsorb nickel from nickel sulfate solution. Several investigations were performed in this research such as characterization of Lapindo mud before and after activation, effect of physical, chemical and chemico-physical activation to Si/Al ratio and determine the most effective method to produce adsorbent with high adsorption rate. Lapindo mud in this research was prepared through several methods such as without activation, calcination at 500 °C for 3 hours, chemical activation with 6 N HCl under reflux for 6 hours, chemical activation with 6 N NaOH under reflux for 6 hours, chemical activation with 6 N HCl under reflux followed by calcination process and the last treatment is chemical activation with 6 N NaOH under reflux followed by calcination process. The object of this research is the Lapindo mud adsorbent ability to adsorb Ni from NiSO4 solution. While activation methods and nickel concentration in this become independent variable. The reduction of nickel concentration efficiency is determined by the nickel concentration before and after adsorption process. The Si/Al ratio of Lapindo mud before activation process was 3.01 and it increase as the mud is activated. The highest Si/Al ratio was found at activation using HCl which is 7.85. Chemical activation using NaOH was found to be the best method to create the adsorbent with adsorption capacity 98.3%.
THE EFFECT OF AMOUNT OF NATURAL ZEOLIT CATALYST IN PRODUCT OF POLYPROPILENE (PP) PLASTIC WASTE PYROLYSIS sa'diyah, khalimatus; Juliastuti, Sri Rachmania
Jurnal Bahan Alam Terbarukan Vol 4, No 2 (2015): December 2015
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v4i2.4171

Abstract

To overcome the waste problem, especially plastic waste , environmental concerned scientists from various disciplines have conducted various research and actions. Catalytic pyrolysis processes was chosen as an alternative method to recycle plastic waste. The purpose of this experiment was to determine the effect of natural zeolit catalyst on the pyrolysis process with oxygen-free conditions to obtain maximum hydrocarbon compounds (gasoline fraction in C5-C9). The process of pyrolysis was conducted in 3.5 dm3 unstirred stainless steel semi-batch reactor. This process operated at atmospheric pressure with nitrogen injection. Plastic waste that used in this particular paper was 50 grams of polypropylene (PP). In pyrolysis process, natural zeolite catalysts was added 2,5 gram (5% weight of natural zeolite per weight of plastic waste samples), 5 gram (10% ), and 10 gram (20%). Temperature of pyrolysis was 450°C and were maintained until 30 minutes. Steam that produced from pyrolisis was condensed and analysed by gas chromatography–mass spectrometry (GC-MS) to determine yield of hydrocarbons produced. From the analysis of GC-MS, liquid products of pyrolysis contained lots of aromatic hydrocarbons. The optimal amount of catalyst that produce liquid with hydrocarbon compound that has the quality of gasoline was 10 gram (20%) with ≤C9 composition as 29,16% n-paraffin, 9,22% cycloparaffin, and 61,64% aromatics.