Claim Missing Document
Check
Articles

Found 5 Documents
Search

Robotics training to improve STEM skills of Islamic boarding school students in Batam Jamzuri, Eko Rudiawan; Soebhakti, Hendawan; Prayoga , Senanjung; Fatekha, Rifqi Amalya; Wibisana, Anugerah; Nakul, Fitriyanti; Hasnira, H.; Analia, Riska; Susanto, S.; Wijaya, Ryan Satria; Suciningtyas, Ika Karlina Laila Nur; Puspita, Widya Rika; Lubis, Eka Mutia; Jefiza, Adlian; Budiana, B.; Firdaus, Ahmad Riyad
Journal of Community Service and Empowerment Vol. 5 No. 1 (2024): April
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jcse.v5i1.26895

Abstract

One potential approach to addressing the challenges posed by the advent of Industry 4.0 and Society 5.0 is to offer robotics training. This endeavor aims to enhance students' foundational understanding of STEM (Science, Technology, Engineering, and Mathematics) disciplines. The study involved collaborating with the Pondok Pesantren Granada, an Islamic Boarding School located in Batam, to provide robotics training as community service activities. The study included 29 trainees: 15 from class XI and 7 from classes X and XII. The teaching was conducted using a combination of didactic instruction, interactive discourse, and hands-on exercises. Trainees are administered a written examination to assess their proficiency level before and after the training program. The training outcomes exhibited a significant improvement in the mean STEM proficiency of trainees, with an increase of 38.15%. Furthermore, a series of activities have been effectively implemented, resulting in trainee satisfaction ratings exceeding 50% concerning course materials, trainer, and teaching equipment. A mere 17% of the individuals undergoing training expressed dissatisfaction with the allocated time, particularly the hands-on component's duration.
Simulation of Mobile Robot Navigation System using Hector SLAM on ROS Soebhakti, Hendawan; Pangantar, Robbi Hermawansya
JURNAL INTEGRASI Vol 16 No 1 (2024): Jurnal Integrasi - April 2024
Publisher : Pusat Penelitian dan Pengabdian Masyarakat Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/ji.v16i1.5755

Abstract

The ability to move from one point to the destination point autonomously is very necessary in AMR robots, to be able to meet this, the robot must be able to detect the surrounding environment and know its location to the environment, the Hector SLAM algorithm is added using the LIDAR sensor, and to find out the ability of the LIDAR sensor with the Hector SLAM and computer specifications in order to process properly, a simulation of the HECTOR SLAM with the LIDAR sensor was made. Simulation is carried out by creating an environment map on the Gazebo. Then explore environmental mapping using Hokuyo LIDAR which has been added to the turtlebot3 model waffle_pi to the simulated environment map. In this study, a model of the second floor lobby environment and Brail of the Batam State Polytechnic was used which was made in the form of a simulation on the Gazebo, where robots that have used LIDAR will be controlled with a keyboard around the simulation environment, where simultaneously the mapping and localization process runs and the process can be seen on the Rviz in real-time, where LIDAR will send data in the form of distance readings that will be received by Hector SLAM. The results of this study are expected that Hector SLAM using LIDAR sensor simulation can produce environmental mapping and localization in the simulation environment and obtain a minimum computer specification to process data from the SLAM Hector process using LIDAR sensors.
Omni-directional Movement on the MRT PURVI Ship Robot Wijaya, Ryan Satria; Kaputra, Aldi; Prasetyo, Naufal Abdurrahman; Soebhakti, Hendawan; Prayoga, Senanjung; Wibisana, Anugerah; Fatekha, Rifqi Amalya; Jamzuri, Eko Rudiawan; Nugroho, Mochamad Ari Bagus
Journal of Applied Electrical Engineering Vol 7 No 2 (2023): JAEE, December 2023
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaee.v7i2.6475

Abstract

Ship transportation is the primary mode of trade and transportation at sea in the maritime industry. Initially, humans employed ships as a method of pursuing and capturing fish or animals in aquatic environments. As the ship era progresses, it actively engages in all aspects pertaining to ships. Presently, the ship is propelled by its engine, which is a significant improvement over its initial reliance on wood or oars. In addition to engines, propellers are employed to transform the rotational motion of the engine into propulsive force in the marine environment. Propellers are also present on aircraft, serving the same purpose but positioned at various locations in the air. A thruster is a hybrid device that combines an engine and a propeller. This sort of thruster is specifically designed for use on tiny boats or prototypes, for the purpose of simulating, exhibiting, or participating in contests. ESC is a component that facilitates the alteration of the input value to the intended velocity. In addition to their primary function of fulfilling food requirements, ships are presently employed in diverse capacities, including military vessels, tourist vessels, submarines, passenger ships, and more.
A Visual-Based Pick and Place on 6 DoF Robot Manipulator Wijaya, Ryan Satria; Pratama, Adhitya; Fatekha, Rifqi Amalya; Soebhakti, Hendawan; Prayoga, Senanjung
Journal of Applied Electrical Engineering Vol 8 No 1 (2024): JAEE, June 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaee.v8i1.7358

Abstract

This paper discusses the application of visual servoing on a 6 DOF robotic manipulator for industrial automation. With visual feedback, the manipulator can perform pick and place operations accurately and efficiently. We explore feature- and model-based visual servoing methods and object detection techniques, including deep learning algorithms. The experimental results show that the integration of visual servoing with pick and place method as well as object detection improves the performance of manipulators in industry. This research contributes to the understanding of visual servoing technology in industrial automation. The conclusion shows that the manipulator is more precise in controlling the X-axis shift in the first two experiments, but faces challenges in the third experiment. The success of the system is affected by environmental factors such as lighting. For further development, research is recommended to improve robustness to environmental variations as well as evaluation of execution speed and object positioning accuracy.
A Penerapan Kontrol PID dalam Penggiring Bola pada Robot Sepak Bola Beroda Ata, Tajdar Hal; Soebhakti, Hendawan
Journal of Applied Electrical Engineering Vol 8 No 1 (2024): JAEE, June 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaee.v8i1.7463

Abstract

Abstrak— Makalah ini membahas implementasi sistem kontrol dalam penggiring bola yang diterapkan untuk bersaing dalam kompetisi Liga Ukuran Menengah RoboCup dan Kontes Robot Indonesia. Desain visualisasi digunakan sebagai landasan untuk mengembangkan mekanisme penggiring bola yang sesuai dengan regulasi RoboCup. Mekanisme ini dirancang agar memiliki fleksibilitas optimal saat robot bergerak translasi. Pendekatan kontrol Proportional Integral Derivative (PID) diterapkan sebagai metode kontrol pada sistem penggiring, bertujuan untuk mengatur respons motor dribble dan menjaga bola tetap terkendali saat robot bergerak dengan kecepatan yang bervarasi atau dalam keadaan diam. Bagian hasil penelitian mengungkapkan respons sistem penggiring bola pada kecepatan mulai dari 20cm/s hingga 120cm/s pada gerak maju dan mundur, pada kecepatan 20cm/s sampai 60cm/s pada gerak lateral. Selain itu, dengan kecepatan 0.2rad/s hinggal 1.5rad/s pada gerak berputar ke arah kanan dan kiri.