Claim Missing Document
Check
Articles

Found 5 Documents
Search

Real-Time Changes of Heart Rhythm Using MATLAB Pratama, Destra Andika; Anisah, Masayu; Marlianda, Septi Adila
International Journal of Research in Vocational Studies (IJRVOCAS) Vol. 3 No. 2 (2023): IJRVOCAS - August
Publisher : Yayasan Ghalih Pelopor Pendidikan (Ghalih Foundation)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53893/ijrvocas.v3i2.202

Abstract

Highest mortality from cardiovascular disease (CVD) in 2019: 17.9 million people died worldwide, accounting for 32% of all deaths, 85% of which were due to heart attack and stroke. In Indonesia, 651,481 people die from cardiovascular disease each year, including 331,349 from stroke, 245,343 from coronary heart disease, and 50,620 from hypertension and other cardiovascular diseases. Disturbance of changes in heart rhythm is a condition when the heart's electrical activity is irregular, it can be faster or slower than usual. This disorder is closely related to cardiovascular diseases such as hypertension, heart failure, valvular heart disease, and coronary artery disease. Changes in heart rhythm are usually not dangerous, but if the heartbeat starts to feel abnormal, it can be fatal and cause sudden death. Changes in heart rhythm can be detected using an electrocardiogram, often called an EKG. The function of the EKG is to record information about the state of the heart using electrodes attached to the body. An EKG examination usually has to be done in a hospital to find out the disease the patient is suffering from. This study implements an ECG signal real-time monitoring and processing system using AD8232 sensor module and will display the resulting ECG signal in MATLAB software. This test will be monitored using Simulink MATLAB on the MATLAB R2022b software. Testing the ECG signal studied there were two activities, namely normal activity and after exercising for five minutes. The test was carried out in a sitting position using a 21 years old woman. The results obtained from the system are made using the AD8232 sensor module has been successfully implemented using R peak detection to generate real-time heart rate. It was found that the heart rate varies between 85 to 90 beats per minute during normal activity. Meanwhile, the heart rate after five minutes of exercise reaches 107 to 111 beats per minute. From this heartbeat, we can assume that the heart is functioning normally.
Application of Deep Learning LSTM in Online Power Prediction on Three-Phase Power Transformer Pratama, Destra Andika; Nabila, Sinta
Building of Informatics, Technology and Science (BITS) Vol 4 No 3 (2022): December 2022
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i3.2690

Abstract

Electrical energy plays an important role in daily life, especially companies. The 3 Phase Power Transformer is one of the important electrical components that is very influential in distributing electrical energy to companies as is the case in PT. Semen Baturaja (Persero). 3-phase power transformers require attention because they are one of the components that are prone to interference, this interference can hinder the effectiveness of using electrical energy as a company support for employees to work. As one of the disturbances for 3-phase power transformers is overload or excessive power usage, overload can raise the temperature at the winding and reduce its service life. Artificial intelligence can be one of the keys to predict the use of power transformers in the future, especially deep learning by utilizing the LSTM algorithm. Optimal power prediction requires a lot of maximum input variables so that in this study, it not only adds an offline learning mode but adds a learning mode that can directly access the company's Power Quality Monitoring (PQM) website online with an average accuracy value of 86.62%.
Simulation of Maximum Power Point Tracking with Fuzzy Logic Control Method on Solar Panels Using MATLAB Pratama, Destra Andika; Damsi, Faisal; Zarkasih, M Sandy
Jurnal Teknologi Informasi dan Pendidikan Vol 17 No 1 (2024): Jurnal Teknologi Informasi dan Pendidikan
Publisher : Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/jtip.v17i1.731

Abstract

One of the newest sources energy is the sun. To limit the usage of fossil fuels, solar power facilities that harness sunlight are beginning to be created. Currently, research on solar panels is increasingly being carried out. Because solar panels are an unlimited source of energy. And solar panels can reduce exhaust emissions from conventional vehicles by 92%. However, the performance of solar panels is strongly influenced by several factors such as sunlight intensity and ambient temperature. So that solar panels can reach the maximum power point, the Maximum power point tracking (MPPT) method is employed to maximize the performance of solar panels. In this research, an mppt system will be created using fuzzy logic control in matlab simulink. Fuzzy logic control is a method that can control the system against load changes. To analyze this fuzzy logic-based mppt system, simulations are carried out using matlab simulink. Simulink is software used to model, simulate, and analyze dynamic systems. From the simulations that have been carried out, solar panels without mppt have a duty cycle change time of 0.1 seconds while with mppt the duty cycle change is 0.7 seconds, where the duty cycle change time without mppt is faster but the operating value is unstable while power tracking with mppt the duty cycle change time is longer but the operating value is more stable.
Perancangan Deteksi Suara Paru Paru Berbasis DSP TMS320C6416T dan Module Wireless Meranda, Arganda; Alfarizal, Niksen; Husni, Nyayu Latifah; Pratama, Destra Andika; Irdayanti, Yeni; Handayani, Ade Silvia
TEKNIKA Vol. 14 No. 2 (2020): Teknika Juli - Desember 2020
Publisher : Politeknik Negeri Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5281/zenodo.13368220

Abstract

AbstrakParu-paru merupakan organ tubuh pada manusia dalam menjalankan sistem respirasi (pernapasan), dan berfungsi sebagai bertukarnya oksigen dan karbondioksida. Untuk mendeteksi suara paru-paru diperlukan stetoskop sebagai alat untuk mendengarkan suara pada paru-paru. Teknik ini disebut sebagai auskultasi, dimana pada teknik ini banyak batasan dan kekurangan. Untuk mengatasi permasalahan tersebut maka pada penelitian ini diusulkan sebuah teknik auskultasi yang dimodifikasi dengan electret condenser microphone untuk menangkap suara pada paru-paru. Tipe yang digunakan electret condenser microphone yaitu unidirectional (cardioid). Sinyal listrik yang dihasilkan oleh electret condenser microphone dikuatkan lagi menggunakan pre-amplifier karna sinyal listrik yang dihasilkan electrets condenser microphone sangat kecil. Pre-amplifier yang digunakan yaitu tube ultragain mic100. Sinyal yang dikuatkan dengan pre-amplifier masih berbentuk sinyal listrik, sinyal listrik ini akan diproses di DSP untuk mengubah sinyal menjadi data diskrit untuk mengubah sinyal suara ke sinyal listrik analog. Sinyal analog akan diubah melalui unit ADC agar dapat berubah menjadi sinyal digital kemudian DSP akan menerima sinyal digital dan memproses data digital tersebut yang kemudian sinyal disimpan dalam bentuk  file .wav. File .wav yang disimpan kemudian dipindahkan ke android melalui RobotDyn UNO+WIFI sebagai media komunikasi. RobotDyn UNO+WIFI yang digunakan yaitu tipe  ATmega328p+ESP8266 CH340G, file .Wav diproses dan diputar untuk dapat divisualisasikan pada android sehingga mempermudah dokter dalam menganalisa suara paru-paru pasien.  Kata kunci:  Suara paru-paru, Stetoskop, Electret Condenser Microphone, Pre-Amplifier dan DSP TMS320C6416T, dan RobotDyn UNO+WIFI ATmega328p+ESP8266 CH340G. AbstractThe lungs are organs in the human body in carrying out the respiratory system (breathing).  It function as the exchange of oxygen and carbon dioxide. To detect lung sounds, a stethoscope is needed as a tool to listen the sounds in the lungs. This technique is called auscultation.  In this technique, there are many limitations and disadvantages. Thus, to overcome this problem, this study proposed an auscultation technique modified with an electret condenser microphone to capture sounds in the lungs. The type used by the electret condenser microphone is unidirectional (cardioid). The electrical signal generated by the electret condenser microphone is amplified using a pre-amplifier because the electrical signal generated by the electrets condenser microphone is very small. The pre-amplifier used is the mic100 ultragain tube. The signal that is amplified by the pre-amplifier is still in the form of an electrical signal, this electrical signal will be processed on the DSP to convert the signal into discrete data to convert the sound signal to an analog electrical signal. The analog signal will be converted through the ADC unit so that it can be transformed into a digital signal then the DSP will receive a digital signal and process the digital data which is then stored in the form of a .wav file. The saved .wav file is then transferred to android via RobotDyn UNO + WIFI as a communication medium. RobotDyn UNO + WIFI used is the type ATmega328p + ESP8266 CH340G, .Wav files are processed and played so that it can be visualized on Android making it easier for doctors to analyze the sound of a patient's lungs. Keywords:  Lung sounds, Stethoscope, Electret Condenser Microphone, Pre-Amplifier and DSP TMS320C6416T, and RobotDyn UNO + WIFI ATmega328p + ESP8266 CH340G.
Penerapan Sistem Pengolahan Citra Digital Pendeteksi Warna pada Starbot Aditya, M Rizky Vira; Husni, Nyayu Latifah; Pratama, Destra Andika; Handayani, Ade Silvia
TEKNIKA Vol. 14 No. 2 (2020): Teknika Juli - Desember 2020
Publisher : Politeknik Negeri Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5281/zenodo.13368229

Abstract

AbstrakSTARBOT (Smart trash can robot) merupakan robot kotak sampah yang dapat bergerak secara otomatis berdasarkan perintah yang diberikan user dan akan bergerak menuju suatu ruangan yang telah ditentukan. Robot ini menggunakan otak pengoperasian Raspberry Pi dan dilengkapi dengan penangkap citra Webcam yang dapat mengenali objek masing-masing ruangan dengan bentuk dan warna yang berbeda. Citra yang ditangkap oleh Webcam diproses menggunakan metode HSV. Nilai HSV didapatkan melalui proses sampling warna, konversi algoritma transformasi ruang warna secara perhitungan, dan simulasi menggunakan trackbar. Proses pengolahan citra yang ditangkap kamera juga memanfaatkan metode radius untuk menentukan jarak minimum antara tanda yang terdapat pada masing-masing ruangan dengan robot. Penggunaan metode HSV dipilih untuk mempermudah pendeteksian warna dalam berbagai kondisi baik dengan intensitas cahaya yang rendah maupun yang tinggi. Kata kunci—3-5 Smart Trash Can, HSV, radius, raspberry pi  AbstractSTARBOT (Smart trash can robot) is a trash box robot that can move automatically based on instructions given by the user and will move to a predetermined room. This robot uses the Raspberry pi as the operating brain and is equipped with a webcam image capture that can recognize objects in each room with different shapes and colors. The image captured by the webcam is processed using the HSV method. The HSV value is obtained through a color sampling process, calculation of the color space transformation algorithm conversion, and simulation using a trackbar. The image processing process captured by the camera also utilizes the radius method to determine the minimum distance between the marks contained in each room and the robot. The use of the HSV method was chosen to facilitate color detection in various conditions, both with low and high light intensity. Keywords—3-5 Smart Trash Can, HSV, radius, raspberry pi