Claim Missing Document
Check
Articles

Found 15 Documents
Search

Adsorpsi Surfaktan Nonionik Alkil Poliglikosida pada Antar muka Fluida-Fluida Adisalamun Adisalamun; Djumali Mangunwidjaja; Ani Suryani; Titi Candra Sunarti; Yandra Arkeman
Jurnal Rekayasa Kimia & Lingkungan Vol 9, No 1 (2012): Jurnal Rekayasa Kimia & Lingkungan
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (164.412 KB)

Abstract

Nonionic surfactants have been used extensively in various industrial applications such as cleaning, personal care, crop protection, paint and coating, textile finishing, emulsion stabilization, food and leather processing. In this study, we have studied the adsorption of three nonionic surfactants of alkyl polyglycoside, namely commercial APG from Cognis and APG produced from glucose as well as APG synthesized from sago starch, at fluid–fluid interfaces. The variation of surface and interfacial tension with the concentration of surfactant in the bulk was studied, and the data were fitted using a surface equation of state derived from the Langmuir isotherm. The agreement between ?(c) data and Langmuir isotherm model was very good.Keywords: adsorption, air/water interface, interfacial tension, surface tension
The Treatment of Hospital Wasterwater Electrocoagulation Using Iron Electrodes: Analysis by Response Surface Methodology Darmadi M. Yusuf; Mirna Rahmah Lubis,; Adisalamun Adisalamun
Jurnal Rekayasa Kimia & Lingkungan Vol 14, No 2 (2019): Jurnal Rekayasa Kimia & Lingkungan (December, 2019)
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (486.057 KB) | DOI: 10.23955/rkl.v14i2.13790

Abstract

Hospital wastewater basically contains organic materials and inorganic materials. Levels of these materials can be determined by testing of Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Dissolved Solid (TDS), and Total Suspended Solid (TSS). The hospital wastewater treatment proposed in this research is the electrocoagulation treatment using electrodes Fe-Fe and uses the response surface method for optimizing the response variable. Referring to this resea rch, the result shows that the relationship between the process variables and the TSS is significantly influential. As the contact time (15, 30, and 45 minutes) is longer and the voltage (6, 9, and 12 volts) is higher, the percentage reductions of TSS increase. However, the electrolyte solution (0–1 M) has little influence/significance to a response variable of TSS. The highest percentage of TSS reduction is at the contact time 30 minutes and 12 volts, which declined at contact time 45 minutes. The model recommended is a quadratic form with a low error less than 1.6%. In such a way, the optimum condition is at contact time 36 minutes, voltage 12 volts, and the electrolyte (NaCl) concentration 0.1 M. The reduction percentage is TSS 72.45%.
Purification of Biodiesel from Waste Cooking Oil Using Bentonite as Dry Washing Agent Nanda Suriaini; Tika Thalia Febriana; Andesta Yulanda; Adisalamun Adisalamun; Yanna Syamsuddin; Muhammad Dani Supardan
Jurnal Rekayasa Kimia & Lingkungan Vol 14, No 2 (2019): Jurnal Rekayasa Kimia & Lingkungan (December, 2019)
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (245.915 KB) | DOI: 10.23955/rkl.v14i2.13165

Abstract

The process of biodiesel purification is an important step in getting biodiesel products that meet specifications as a substitute for fossil-based fuels. Dry washing method has been developed to achieve an effective purification strategy in order to produce high-quality biodiesel. Bentonite can be used as dry washing agent because it has a good adsorbing properties as well as a large pore and surface area therefore can attract polar substances such as glycerol and methanol. The purpose of this research is to know the capability of activated bentonite as dry washing agent for purification of biodiesel produced from waste cooking oil. The activation process of bentonite was carried out using sulfuric acid with concentration 1.5 M. Characterization of the bentonite was conducted using X-Ray Diffraction (XRD) for minerals content and Brunauer–Emmett–Teller (BET) method for surface area. Bentonite was used as dry washing agent for biodiesel purification by varying washing time (10, 20, 30, 40 and 50 minutes) and adsorbent amount (1, 2, 3, 4 and 5%). The experimental results showed that purification of biodiesel by dry washing using activated bentonite resulted in a better yield and quality than wet washing and dry washing using non-activated bentonite, except the acid number. The best operation condition resulted from this research is at 10 minutes washing time and 1% adsorbent with yield of 94.1%; acid number of 0.4208 mg KOH/gram; density of 0.8838 gram/cm3, viscosity of 3.0617 mm2/s and water content of 1.17%.
Aplikasi Metode Advance Oxidation Process (AOP) Fenton pada Pengolahan Limbah Cair Pabrik Kelapa Sawit Ruka Yulia; Hesti Meilina; Adisalamun Adisalamun; Darmadi Darmadi
Jurnal Rekayasa Kimia & Lingkungan Vol 11, No 1 (2016): Jurnal Rekayasa Kimia & Lingkungan
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1026.361 KB) | DOI: 10.23955/rkl.v11i1.4098

Abstract

Penelitian ini bertujuan untuk mengetahui kemampuan proses Fenton dalam menurunkan kadar chemical oxygen demand (COD) dan kadar total suspended solid (TSS) dari limbah cair pabrik kelapa sawit (PKS) dan menentukan kondisi optimum dari parameter yang digunakan dengan Response Surface Methodology menurut Box- Behnken design. Sampel diambil pada keluaran pertama kolam anaerobik ketiga dari instalasi pengolahan limbah cair kelapa sawit yang mengandung nilai COD berkisar antara 8.000 hingga 12.000 ppm. Pada penelitian ini, dilakukan pengujian pada berbagai pH, konsentrasi FeSO4.7H2O dan konsentrasi hidrogen peroksida. Hasil  penelitian menunjukkan bahwa kemampuan proses AOP dengan metode Fenton dapat menurunkan konsentrasi COD dan TSS masing-masing adalah 70,7704% dan 88,3897% pada konsentrasi FeSO4.7H2O 3703,52 ppm, konsentrasi H2O2 5586,43 ppm, dan pH 3.
Bentonite and Magnetite Filler-Modified Polyurethane Foam in Fixed Bed Column for the Adsorption of Mercury(II) Ions from Aqueous Solution Siti Sarah; Adisalamun Adisalamun; Darmadi Darmadi; Suraiya Kamaruzzaman; Abrar Muslim; Saiful Saiful
Aceh International Journal of Science and Technology Vol 10, No 1 (2021): April 2021
Publisher : Graduate Program of Syiah Kuala University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (535 KB) | DOI: 10.13170/aijst.10.1.18890

Abstract

This paper proposed adsorbent development by synthesizing polyurethane foam (PUF) using a simple method, mixing polyol with isocyanate and adding fillers of bentonite and magnetite to the PUF matrix. The study's main objective was to produce a PUF-based adsorbent with high reactivity to remove Hg2+ in wastewater. This bentonite and magnetite filler-modified polyurethane foam (BMPUF) adsorbent was fixed in a bed column for the adsorption of mercury (II) ions from an aqueous solution. The effect of initial Hg2+ concentration on the removal rate and the effect of contact time on adsorption efficiency was investigated. Langmuir, Freundlich, and BET non-linear models were taken into account to determine the best adsorption isotherm fitting and obtain adsorption capacity, intensity, and pore volume. As a result, it followed the non-linear Freundlich model, and the average adsorption capacity and intensity were 0.466 mg/g and 0.923, respectively. The average BET-based pore volume obtained was 0.782 L/mg. The kinetics study showed that the non-linear pseudo-first-order kinetics model was more suitable for describing the Hg2+ adsorption kinetics. The maximum equilibrium adsorption capacity was 1.770 mg/g with the adsorption rate of 0.0013 min-1 based on the non-linear model. The effect of varying bentonite and magnetite ratio on adsorption isotherm and kinetics was also investigated. Overall, the potential application of BMPUF adsorbent in the adsorption of mercury (II) ions was demonstrated in the current study.