This Author published in this journals
All Journal Dinamis
Claim Missing Document
Check
Articles

Found 8 Documents
Search

ANALISIS EKSPERIMENTAL GAYA DAN TEGANGAN MATERIAL KOMPOSIT PADA PERANCANGAN PELINDUNG DADA PENGENDARA SEPEDA MOTOR Irvin; M. Sabri; Mahadi; Bustami Syam; Syahrul Abda
DINAMIS Vol. 5 No. 2 (2017): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1163.161 KB) | DOI: 10.32734/dinamis.v5i2.7052

Abstract

The goal of this research is to identify the stress and force that occur in the motorbike body protector which created using composite material in order to protect human chest. Free-fall drop test is done using Multifunctional Free-fall impact test tools. Specimen placed to the test rig which has adjustable drop height. The fall time of test is calculated using 8 inductive proximity sensors. It will fall and crashed the anvil. Impact force that occurs by the drop is measured using a load cell that placed under the anvil. Measurement data will transfer to analog device that changed the analog signal into a digital signal. Result data is saved in the PC as a table of force (F) and time (t). Experimental test data for the body protector specimens using GFRP at the impactor height 3 m is 698.17 kgf and stress 0.014 MPa. After the result compared with the computational result the mean transmission impact force is 14.95 kN and the maximum transmission impact force is 29.18 kN. Thus the transmission force that occur is not pass the European de Normalization (EN 1621-2) which for average impact force transmitted is 20kN and maximum impact force transmitted is 35 kN.
SIMULASI ANSYS 14.0 KEKUATAN IMPAK JATUH BEBAS PADA STRUKTUR ATAP MOBIL DARI BAHAN KOMPOSIT POLYMERIC FOAM DIPERKUAT SERAT TANDAN KOSONG KELAPA SAWIT Abdullah Y. Harahap; Syahrul Abda; Bustami Syam; Marragi M.; Tugiman
DINAMIS Vol. 5 No. 2 (2017): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1469.607 KB) | DOI: 10.32734/dinamis.v5i2.7053

Abstract

Tandan kosong kelapa sawit jumlahnya sangatlah melimpah dikarenakan pabrik pengolahan kelapa sawit yang terdapat di Indonesia memiliki jumlah yang sangat banyak, menurut survey yang dilakukan limbah tandan kosong kelapa sawit saat ini mencapai 20 juta ton. Tandan kosong kelapa sawit memiliki nilai ekonomis untuk direkayasa sebagai bahan alternatif yang dapat dimanfaatkan dengan alasan masih berlimpahnya bahan baku, bebas korosi, tahan dan mampu menyerap panas, oleh karena itu serat tandan kosong kelapa sawit dapat dimanfaatkan sebagai penguat bahan komposit polymeric foam. Tujuan penelitian ini untuk mengetahui proses pembuatan, menganalisa kekuatan struktur atap mobil terhadap beban impak jatuh bebas dengan mensimulasikan dengan meggunakan perangkat lunak Ansys 14.0. Pembuatan struktur atap mobil dari bahan komposit polymeric foam dibuat menggunakan metode penuagan langsung yang terdiri dari bahan matrik dan penguat. Matrik resin BTQN 157 EX, poliuretan dibuat dari campuran poliol dengan isosianat, serta katalis MEKPO dan sebagai penguat adalah serat tandan kosong kelapa sawit. Dari proses simulasi yang dilakukan dengan perangkat lunak Ansys 14,0, maka diperoleh hasil simulasi perangkat lunak Ansys 14.0 diperoleh (????????????????????) = 31130 [Pa].
ANALISA DAERAH ANTAR MUKA HASIL PROSES CLADDING MATERIAL STAINLESS STEEL TERHADAP BAJA KARBON MENENGAH Bresman P Siboro; Syahrul Abda; Mahadi; Farida Ariani; M. Sabri; Bustami Syam
DINAMIS Vol. 4 No. 4 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1487.416 KB) | DOI: 10.32734/dinamis.v4i4.7112

Abstract

Penggunaaan Baja karbon menengah dalam dunia industri masih sangat banyak digunakan. Namun dalam aplikasi tertentu, seperti peralatan otomotif, konstruksi dekat laut, tangki tekanan tinggi, Baja karbon menengah perlu dilapis dengan stainless steel agar dapat digunakan sesuai aplikasinya dan masa pakai yang tahan lama. Proses yanag diteliti adalah proses cladding yaitu ikatan bersama-sama dari dua logam berbeda. Cladding dapat dicapai dengan dua logam, melalui logam induk dan logam pelapis serta menekan lembaran bersama dibawah tekanan dan temperatur tinggi (850 0C). Tujuan penelitian adalah untuk mendapatkan nilai kekerasan dan mengamati difusi yang terjadi pada struktur mikro di daerah antar muka. Pengujian yang dilakukan adalah uji kekerasan dan uji struktur mikro. Nilai kekerasan pada daerah antar muka pada masing – masing varian waktu penahanan 20 menit, 40 menit dan 60 menit ditemukan peningkatan nilai kekerasan secara berturut – turut yakni 113,5 BHN, 125,6 BHN dan 128,30 BHN. Analisa struktur mikro waktu penahanan 20 menit terjadi difusi, tetapi belum sepenuhnya disepanjang daerah antar muka, pada waktu penahanan 40 menit difusi yang terjadi disepanjang daerah antar muka, dan pada waktu penahanan 60 menit difusi yang terjadi disepanjang daerah antar muka. kesimpulan yang diperoleh adalah semakin lama waktu pemanasan pada proses cladding, nilai kekerasan yang diperoleh akan semakin tinggi. Pada struktur mikro, semakin lama waktu penahanan pemanasan difusi terjadi disepanjang daerah interface.
KETANGGUHAN TEGANGAN TARIK SAMBUNGAN LAS DAN FOTO MIKRO DARI MATERIAL ALUMINIUM-MAGNESIUM PADA PESAWAT TANPA AWAK Ali M. Nainggolan; Ikhwansyah Isranuri; M. Sabri; Bustami Syam; Syahrul Abda
DINAMIS Vol. 5 No. 4 (2017): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1244.548 KB) | DOI: 10.32734/dinamis.v5i4.7113

Abstract

Pembangunan konstruksi dengan menggunakan logam pada masa sekarang ini banyak melibatkan unsur pengelasan khususnya bidang rancang bangun karena sambungan las merupakan salah satu pembuatan sambungan yang secara teknis memerlukan keterampilan yang tinggi bagi pengelas,. Salah satu faktor yang mempengaruhi ketangguhan material adalah sifat mekanik dari material tersebut. Jika material diberi proses pengelasan, maka akan dapat merubah sifat mekanik dari material tersebut. Untuk mengkaji hal tersebut disusunlah sebuah konsep penelitian yang terdiri dari dua tahapan. Mengukur kekuatan tarik pengelasan pada Aluminium-Magnesium dan pengujian Metalography. Pengujian tarik pada pengelasan oksi-asitilen,menggunakan material dari pesawat tanpa awak dimana nilai regangan rata-rata pada ketiga spesimen adalah 4,1333%,nilai modulus elastisitas rata-rata adalah 16411,15659 MPa.dan pada pengujian metalografi terlihat warna putih keperakan menunjukan aluminium dan butiran berwarna hitam menunjukan magnesium.
PENGARUH VARIASI DIAMETER RONGGA TERHADAP KOEFISIEN SERAP BUNYI PADUAN ALUMINIUM-MAGNESIUM BERONGGA Indra N. T.; Ikhwansyah Isranuri; Syahrul Abda; Tugiman; Farida Ariani; Alfian Hamsi
DINAMIS Vol. 4 No. 4 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1176.06 KB) | DOI: 10.32734/dinamis.v4i4.7117

Abstract

Bunyi memiliki banyak manfaat untuk kehidupan manusia dan makhuk lainnya. Akan tetapi bunyi yang berlebihan atau yang disebut kebisingan akan sangat menggangu dan akan menimbulkan kerugian bagi manusia. Pengendalian kebisingan sangat diperlukan untuk menciptakan lingkungan yang nyaman bebas dari kebisingan. Pengendalian kebisingan dapat dilakukan dengan berbagai teknik. Salah satu teknik pengendalian kebisingan itu adalah dengan menyerap bunyi. Terdapat banyak material teknik yang dapat digunakan sebagai bahan penyerap bunyi, salah satu contohnya adalah aluminium. Pada penelitian ini magnesium dipadukan dengan aluminium dengan cara pengecoran berongga dengan diameter rongga berbeda disetiap spesimen dan kemudian dilakukan pengujian serap bunyi dengan metode tabung impedansi sehingga dapat diketahui bagaimana pengaruhnya terhadap sifat penyerapan bunyi dari paduan aluminium-magnesium. Hasil penelitian ini menunjukkan bahwa koefisien serap bunyi tertinggi pada paduan aluminium-magnesium dengan diameter rongga 3 mm dan frekuensi yang paling baik diserap oleh material ini adalah 1500 Hz.
SIMULASI STATIK DAN DINAMIK PARKING BUMPER REDESAIN MENGGUNAKAN SOFTWARE ANSYS 12.0 Reyhan Almer; Bustami Syam; Ikhwansyah Isranuri; M. Sabri; Marragi M; Tugiman; Syahrul Abda
DINAMIS Vol. 4 No. 4 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (958.441 KB) | DOI: 10.32734/dinamis.v4i4.7118

Abstract

Penelitian yang telah dilakukan terhadap desain parking bumper memperlihatkan bahwa desain terbaik berbentuk trapesium padat [2]. Namun dalam pengujian yang dilakukan [5] memperlihatkan bahwa desain trapesium padat masih memiliki kelemahan yaitu tidak mampu menahan kecepatan mobil diatas 20 km/jam saat menuju parkir. Bila kecepatan mobil saat parkir lebih tinggi maka akan menyebabkan parking bumper mengalami kerusakan. Oleh sebab itu perlu dilakukan modifikasi desain (redesain) untuk mendapatkan bentuk desain yang lebih maksimal. Tujuan dari penelitian ini adalah melakukan pemodelan berupa redesain parking bumper dengan geometri trapesium sama sisi yang memiliki dimensi panjang 250 mm, lebar 200 mm, dan tinggi 130 mm. Selanjutnya meneliti hasil pengujian statik dan dinamik pada salah satu sisi miring melalui simulasi menggunakan program Ansys 12.0 Workbench sehingga diperoleh tegangan, regangan dan total deformasi. Berdasarkan uji statik ditentukan modulus elastisitas maksimum redesain parking bumper dan berdasarkan uji dinamik ditentukan gaya impak maksimum yang sanggup diterima parking bumper sesaat sebelum mengalami kerusakan. Terakhir membandingkan hasil penelitian yang dilakukan dengan penelitian sebelumnya [5]. Hasil pengujian statik dan dinamik pada salah satu sisi miring redesain parking bumper melalui simulasi menggunakan program Ansys 12.0 Workbench diperoleh hasil sebagai berikut: (1). Telah berhasil dilakukan redesain parking bumper dengan geometri berupa trapesium berongga yang diisi dengan bahan beton (concrete) dengan sisi miring berbentuk radius, memiliki dimensi panjang 250 mm, lebar 200 mm dan tinggi 130 mm. (2). Hasil simulasi statik dengan tekanan sebesar 2500 MPa selama selang waktu 240 s (4 menit), diperoleh tegangan rata-rata 6.909,9 Mpa, tegangan maksimum 8.884,2 MPa, regangan rata-rata 0.62812 m/m, regangan maksimum 0,80765 m/m, total deformasi rata-rata 0,034563 m, total deformasi maksimum 0,044438 m, dan modulus elastisitas maksimum 11.000 MPa. (3). Hasil simulasi dinamik dengan kecepatan jatuh bebas sebesar 10 m/s yang setara dengan 36 km/jam, diperoleh tegangan dinamik rata-rata 18,957 Mpa, tegangan maksimum 34,122 MPa, regangan impak rata-rata 0,00063424 m/m, regangan maksimum 0,0011416 m/m,total deformasi rata-rata 0,0030385 m, total deformasi maksimum 0,0054693 m dan gaya impak maksimum adalah 34.820 kN. (4). Dari hasil penelitian di atas dapat disimpulkan bahwa redesain parking bumper berupa trapesium berongga yang diisi concrete dengan sisi miring radius mempunyai karakteristik yang lebih baik dibandingkan dengan hasil penelitian sebelumnya berupa parking bumper berbentuk traperium padat [5].
PEMBUATAN DAN ANALISIS GAYA BADAN PESAWAT TANPA AWAK DARI BAHAN MATERIAL KOMPOSIT YANG DIPERKUAT POLYESTER DAN SERAT ROCK WOOL DENGAN METODE HAND LAY UP Juliono S.; Ikhwansyah Isranuri; Syahrul Abda; M. Sabri; Tugiman; Mahadi
DINAMIS Vol. 4 No. 4 (2016): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1066.672 KB) | DOI: 10.32734/dinamis.v4i4.7120

Abstract

Badan pesawat adalah komponen utama dari sebuah pesawat terbang. Badan pesawat ini sendiri merupakan tempat melekatnya bagian-bagian pesawat seperti wing, elevator maupun roda pendaratan. Panjang badan pesawat tanpa awak ini adalah 2027 mm. Penelitian ini dilakukan untuk membuat dan menganalisis badan pesawat tanpa awak dengan menggunakan bahan komposit campuran resin polyester dengan serat rock wool. Penelitian ini bertujuan untuk mencari nilai titik berat secara teoritis pada badan pesawat tanpa awak serta mendapatkan nilai tegangan regangan yang terjadi pada badan pesawat tanpa awak melalui simulasi dengan menggunakan software Ansys 14.0. Manfaat utama dari penggunaan material komposit adalah mendapatkan kombinasi sifat kekuatan serta kekakuan tinggi dan berat jenis yang ringan. Pada proses penelitian terdapat langkah-langkah proses pembuatan badan pesawat tanpa awak. Melalui penelitian ini pada proses pembuatan badan pesawat tanpa awak dikatakan berhasil dan diperoleh letak titik berat pada badan pesawat yang dihitung secara teoritis didapat pada koordinat x= 897,37, y= 77,77. Regangan maksimum yang terjadi sebesar 0.00014584 mm/mm dan regangan minimum yang terjadi sebesar 3.2414 x 10-8 mm/mm. Tegangan maksimum sebesar 4.5635 MPa dan tegangan minimum yang terjadi sebesar 0.00045862 Mpa melalui hasil simulasi dengan software Ansys 14.0 Workbench.
ANALISA SIMULASI PERFORMANSI KAMPAS REM KOMPOSIT DENGAN VARIASI BEBAN PEMODELAN METODE ELEMEN HINGGA Suci N. Sandi; Ikhwansyah Isranuri; M. Sabri; Farida Ariani; Syahrul Abda
DINAMIS Vol. 7 No. 4 (2019): Dinamis
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1098.343 KB) | DOI: 10.32734/dinamis.v7i4.7224

Abstract

Rem merupakan salah satu faktor penting dalam sistem pengereman, karena pentingnya fungsi rem pada kendaraan perlu dilakukannya kajian mendalam tentang koefisien gesek, keausan dan tahap-tahapnya. Simulasi dengan menggunakan metode elemen hingga (FEM) merupakan salah satu program untuk menentukan fenomena-fenomena yang terjadi pada suatu komponen. Dalam penelitian ini telah mensimulasikan gaya pengereman belakang (tromol) kendaraan sepeda motor. Metode yang digunakan adalah memodelkan gesekan pada proses pengereman. Analisa tersebut dilakukan dengan menggunakan simulasi program dengan metode elemen hingga (FEM) dalam bentuk pemodelan 3D. Material kampas rem adalah komposit (cangkangn kemiri,serat daun nenas, aluminium dan polyuretan). Karena proses pengereman dengan tekanan dan gaya momen yang berubah-ubah maka analisa dilakukan dengan analisa statis bertujuan untuk mendapatkan hasil deformasi dan von misses dan dinamis untuk mendapatkan hasil frictional stress, sliding distance dan pressure agar mendapatkan nilai koefisien gesek simulasi. Perubahan terjadi dengan memberikan variasi pembebanan dengan kecepatan konstan.