Claim Missing Document
Check
Articles

Found 2 Documents
Search

Experimental Investigation on PM10 and PM2.5 Concentrations in North Bandung Wellid, Ismail; Nurfitriani, Nita; Falahuddin, Muhamad Anda; Simbolon, Luga Martin; Sunardi, Cecep; Nuryati, Neneng; bin Sukri, Mohamad Firdaus
Jurnal Internasional Penelitian Teknologi Terapan Vol 4 No 2 (2023): October 2023
Publisher : Bandung State Polytechnic (Politeknik Negeri Bandung)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35313/ijatr.v4i2.124

Abstract

North Bandung is an area where there are several tourist attractions, including the Dago Dream Park. The main road to several locations in North Bandung is via the road in front of Terminal Dago. For this reason, the purpose of this study was to collect data on PM2.5 and PM10 concentrations at both locations, namely in front of Terminal Dago and Dago Dream Park. Data collection was carried out for seven days, from Monday to Sunday, from 08.00 to 16.00 local time. To evaluate air quality in these two places, the national standard, namely PPRI No. 22 of 2021 and international standards from WHO were applied. The measurement results show that the concentrations of PM2.5 and PM10 in these two locations are still within the national standard. Meanwhile, when evaluated with WHO standards, PM10 concentrations in both locations are still within standard, but for PM2.5, there are several days where the air quality is out of the standard. The average concentrations of PM2.5 and PM10 during the 7 days of measurement at Terminal Dago are 19.9 μg/m3 and 21.6 μg/m3, respectively. While the average concentration of PM2.5 and PM10 during 1 week of data collection were 18.9 μg/m3 and 19.9 μg/m3, respectively. This means that the concentration of PM2.5 and PM10 at Terminal Dago is slightly higher than that of at Dago Dream Park. In addition, based on an evaluation using national standards, Dago Dream Park tourist attractions still have good air quality and are safe for local residents and tourists. From the data recorded at the Health Centre (Puskesmas), the number of ARI cases in the two locations in 2020 and 2021 is relatively not much different.
Numerical Investigation of the Effect of Changes in Glass Typeon the Cooling Load in a Building Sunardi, Cecep; Mitrakusuma, Windy Hermawan; Pradita, Didiet Tricahya; Kasni, Sumeru; Sulaimon, Shodiya
Jurnal Internasional Penelitian Teknologi Terapan Vol 5 No 1 (2024): February 2024
Publisher : Bandung State Polytechnic (Politeknik Negeri Bandung)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35313/ijatr.v5i1.145

Abstract

Solar radiation enters the building through the glass by both radiation and conduction. The heat passing through the glass is one of the largest cooling loads. Therefore, modifying the glass type, will potentially reduce the cooling load significantly. This numerical study uses Cooling Load Temperature Difference (CLTD) method to calculate the change in cooling load in a five-story hospital. The Glass material was changed from clear glass to coated glass. Based on the calculation of cooling load per hour, from 07.00 to 19.00, it is obtained that the peak load occurs at 17.00, both when using clear glass clear and coated glass. The replacement of clear glass with coated glass results in a 70.0% decrease in radiation cooling load, from 104.59 kW to 31.38 kW. In addition, replacing this type of glass will reduce the total cooling load by 17.0%, from 418.80 kW to 347.57 kW. The decrease in total cooling load will lead to a decrease in the operational cost of the air conditioning system. If it is assumed that the AC system operates at 75% peak load for 16 hours per day, then replacing the glass will reduce electricity costs by approximately Rp. 43.6 million/month.