Murizah Kassim
Universiti Teknologi MARA

Published : 17 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 17 Documents
Search

Adaptive photovoltaic solar module based on internet of things and web-based monitoring system Murizah Kassim; Fadila Lazim
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp924-935

Abstract

This paper presents an intelligent of single axis automatic adaptive photovoltaic solar module. A static solar panel has an issue of efficiency on shading effects, irradiance of sunlight absorbed, and less power generates. This aims to design an effective algorithm tracking system and a prototype automatic adaptive solar photovoltaic (PV) module connected through internet of things (IoT). The system has successfully designated on solving efficiency optimization. A tracking system by using active method orientation and allows more power and energy are captured. The solar rotation angle facing aligned to the light-dependent resistor (LDR) voltage captured and high solar panel voltage measured by using Arduino microcontroller. Real-time data is collected from the dynamic solar panel, published on Node-Red webpage, and running interactive via android device. The system has significantly reduced time. Data captured by the solar panel then analyzed based on irradiance, voltage, current, power generated and efficiency. Successful results present a live data analytic platform with active tracking system that achieved larger power generated and efficiency of solar panel compared to a fixed mounted array. This research is significant that can help the user to monitor parameters collected by the solar panel thus able to increase 51.82% efficiency of the PV module.
A review on orchestration distributed systems for IoT smart services in fog computing Nor Syazwani Mohd Pakhrudin; Murizah Kassim; Azlina Idris
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i2.pp1812-1822

Abstract

This paper provides a review of orchestration distributed systems for IoT smart services in fog computing. The cloud infrastructure alone cannot handle the flow of information with the abundance of data, devices and interactions. Thus, fog computing becomes a new paradigm to overcome the problem. One of the first challenges was to build the orchestration systems to activate the clouds and to execute tasks throughout the whole system that has to be considered to the situation in the large scale of geographical distance, heterogeneity and low latency to support the limitation of cloud computing. Some problems exist for orchestration distributed in fog computing are to fulfil with high reliability and low-delay requirements in the IoT applications system and to form a larger computer network like a fog network, at different geographic sites. This paper reviewed approximately 68 articles on orchestration distributed system for fog computing. The result shows the orchestration distribute system and some of the evaluation criteria for fog computing that have been compared in terms of Borg, Kubernetes, Swarm, Mesos, Aurora, heterogeneity, QoS management, scalability, mobility, federation, and interoperability. The significance of this study is to support the researcher in developing orchestration distributed systems for IoT smart services in fog computing focus on IR4.0 national agenda
Single event latch-up detection for nano-satellite external solar radiation mitigation system Norsuzila Yaa’cob; Muhammad Fauzan Ayob; Noraisyah Tajudin; Murizah Kassim; Azita Laily Yusof
Bulletin of Electrical Engineering and Informatics Vol 10, No 1: February 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i1.2488

Abstract

This paper presents the single event latch-up (SEL) detection for nano-satellite external solar radiation mitigation system. In this study, the SEL detection analysis was conducted using circuit test and simulation. An electrical power subsystem (EPS) is a part of all CubeSat bus subsystems and it comprises solar arrays, rechargeable batteries, and a power control and distribution unit (PCDU). In order to extract the maximum power generated by the solar arrays, a peak power tracking topology is required. This may lead to the SEL with the presence of high voltage produced by solar. To overcome the SEL problems, the circuit test and simulation must be done so that the flow of SEL will be easily detected and mitigate. The method that been used are by using microcontroller, the SEL will be created in the certain time. The programable integrated circuit (PIC) are used to mitigate SEL effect. It indicates that, the SEL occur very fast in certain time. When the simulation is conducted by using SPENVIS, the result shows, only single event upset (SEU) was affected on UiTMSAT-1.
Implementation of vehicle ventilation system using NodeMCU ESP8266 for remote monitoring Amirun Murtaza Abd Jalil; Roslina Mohamad; Nuzli Mohamad Anas; Murizah Kassim; Saiful Izwan Suliman
Bulletin of Electrical Engineering and Informatics Vol 10, No 1: February 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i1.2669

Abstract

In this paper, an implementation of vehicle ventilation system using microcontroller NodeMCU is described, as an internet of things (IoT) platform. A low-cost wireless fidelity (Wi-Fi) microchip ESP8266 integrated with NodeMCU provides full-stack transmission control protocol/internet protocol (TCP/IP) to communicate between mobile applications. This chip is capable to monitor and control sensor devices connected to the IoT platform. In this reserach, data was collected from a temperature sensor integrated to the platform, which then monitored using Blynk application. The vehicle ventilation system was activated/deactivated through mobile application and controlled using ON/OFF commands sent to the connected devices. From the results, the vehicle ventilation system built using NodeMCU microcontroller is capable to provide near real-time data monitoring for temperature in the car before and after the ventilation system was applied.
QoS of Wi-Fi performance based on signal strength and channel for indoor campus network Adiba Abd Ghafar; Murizah Kassim; Norsuzila Ya’acob; Roslina Mohamad; Ruhani Ab Rahman
Bulletin of Electrical Engineering and Informatics Vol 9, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (900.89 KB) | DOI: 10.11591/eei.v9i5.2251

Abstract

The implementation of Wi-Fi on campuses brings huge benefits for campus users in communications and education development. Some campuses face existing poor quality of service (QoS) on the Wi-Fi performance which is also unjustified and issues on unsatisfied connections. This research aims to analyses the Wi-Fi performance of the campus network for three indoor access points. Signal strength, usage percentage, channel utilization, and the number of clients count per access points are measured. Results show that 56% is the highest signal percentage and the lowest signal percentage is at 1%. Access point of Ustudent is the highest at 53% and lowest at 38%. The highest signal strength of -45dBm is found and the other two are below by -2 dBm. The lowest signal strength is at -95 dBm. SSID CCNA_1 is identified has the best signal strength compared to other SSIDs because it runs on 5 GHz frequency. The most channels used are channels 1, 4, and 6. Respectively 151, 67, and 57 users are connected to Ustudent, UHotspot, and CCNA_1. This study is significant for the QoS in a campus network in providing good network services. Thus, the QoS on Wi-Fi performance is improvised, monitored and analyzed for continues supports users in the campus network successfully.
Mobile Application for Electric Power Monitoring on Energy Consumptions at a Campus University Murizah Kassim; Maisarah Abdul Rahman; Cik Ku Haroswati Che Ku Yahya; Azlina Idris
Indonesian Journal of Electrical Engineering and Computer Science Vol 11, No 2: August 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v11.i2.pp637-644

Abstract

This paper presents a research on electric power monitoring prototype mobile applications development on energy consumptions in a university campus. Electric power energy consumptions always are the issue of monitoring usage especially in a broad environment. University campus faces high used of electric power, thus crucial analysis on cause of the usage is needed. This research aims to analyses electric power usage in a university campus where implemented of few smart meters is installed to monitor five main buildings in a campus university. A Monitoring system is established in collecting electric power usage from the smart meters. Data from the smart meter then is analyzed based on energy consume on 5 buildings. Results presents graph on the power energy consume and presented on mobile applications using Live Code coding. The methodology involved the setup of the smart meters, monitoring and data collected from main smart meters, analyzed electrical consumptions for 5 buildings and mobile system development to monitor. A Live Code mobile app is designed then data collected from smart meter using ION software is published in graphs. Results presents the energy consumed for 5 building during day and night. Details on maximum and minimum energy consumption presented that show load of energy used in the campus. Result present Tower 1 saved most eenergy at night which is 65% compared to block 3 which is 8% saved energy although block 3 presents the lowest energy consumption in the working hours and non-working hours. This project is significant that can help campus facility to monitor electric power used thus able to control possible results in future implementations.
Fault disturbances classification analysis using adaptive neuro-fuzzy inferences system Shahrani Shahbudin; Murizah Kassim; Roslina Mohamad; Saiful Izwan Suliman; Yuslinda Wati Mohamad Yusof
Indonesian Journal of Electrical Engineering and Computer Science Vol 16, No 3: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v16.i3.pp1196-1202

Abstract

This paper affords the use of neuro-fuzzy technique called the Adaptive Network–based Fuzzy Inference System (ANFIS) to highlight its ability to perform fault disturbances classification tasks using extracted features based on S-transforms methods. The ANFIS model with a five-layered architecture was trained using extracted features to classify signal data comprising various faults disturbances, namely, voltage sag, swell, impulsive, interruption, notch, and pure signal.  Results obtained showed that the ANFIS model is very suitable and can generate excellent classification results provided that the right type and number of Membership Functions (MFs) are used in the classification task.
Analysis of Wireless Power Transfer on the inductive coupling resonant Cik Ku Haroswati Che Ku Yahaya; Syed Farid Syed Adnan; Murizah Kassim; Ruhani Ab Rahman; Mohamad Fazrul bin Rusdi
Indonesian Journal of Electrical Engineering and Computer Science Vol 12, No 2: November 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v12.i2.pp592-599

Abstract

Wireless power transfer through inductive coupling is proposed in this paper. Based on the concept of Tesla, the circuit was designed using two parallel inductors that are mutually coupled. The designed was split into two which are transmitter part and receiver part. The circuit was simulated using proteus simulation software. The results had shown that the changes in a number of turn of the inductor coils and distance of the two resonators affecting the efficiency of the power transfer. The wireless power transfer can be described as the transmission of electrical energy from the power source to the electrical load without any current-carrying wire connecting them. Wireless power transfer is deemed to be very useful in some circumstances where connecting wires are inconvenient. Wireless power transfer problems are different from wireless telecommunications such as radio. Commonly, wireless power transfers are conducted using an inductive coupling and followed by magnetic induction characteristics. In this project, we use magnetic induction using copper wire with a different diameter. By using these different diameters of wires, we are going to see the power transfer performance of each wire. It is possible to achieve wireless power transfer up to 30 centimeters between the transmitter and the receiver with a higher number of coil's turn. As concern as it may seem, the wireless power transfer field would be in high demand for electric power to be supplied in the future.
Web design structure with wordpress content management for sports centre booking system Nor Sajidah Ab Ghani; Murizah Kassim; Aziati Husna Awang
Indonesian Journal of Electrical Engineering and Computer Science Vol 19, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v19.i3.pp1643-1653

Abstract

Sports center booking system need to be more systematic to increase its efficiency. The world wide web (WWW) had been a revolution and it has been utilized to be tools of automation in many applications, including managing booking and payment system in this area of services.  However, existing system needs an ID booking to book the facilities at the court centre and does not delegate any confirmation to users on their booking. This paper aims at integrating stripe payment method by using the WordPress platform where it is one of the content management system (CMS) by using XAMPP. MySQL has been used to store the database while PHP and HTML have been designed to generate QR code. This system was designed based on some function needed for the new member, staffs, and students. The procedure is that the new members will register and pay their members fees. Existing student and staff will just need to sign in using their ID number. This system has provided a booking system which presented the availability of time and date as well as the payment for the new members. Upon booking and payment, email and QR code are given to the user after the confirmation booking by an administrator.  The result shows the increase of efficiency after implementing the new features on the web system which shows 86.66% of increases in term of using the website to book the facilities at the sports centre from the existing system.
3D modeling of multimode and single mode fiber Murizah Kassim; Ahmad Syahir Arif Mohd Zaid; Azlina Idris; Shahrani Shahbudin; Roslina Mohamad; Cik Ku Haroswati Che Ku Yahaya
Indonesian Journal of Electrical Engineering and Computer Science Vol 16, No 3: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v16.i3.pp1398-1406

Abstract

This paper presents a design of 3D modeling of Multimode and Single Mode Fiber using SolidWorks. Fiber technology is essential that presents optical fiber is the fastest optical cable laid by Internet Service Providers in network communication. The current design of both fibers has less detail animation on technical specifications of light propagations and cladding. Thus, characterization difficulties occur between this two fiber optics cables. It also has less promotion in media publications such as 3D model design as guidance to users. This paper presents details on 3D modeling of multimode mode and single mode fiber specifications held in the industry market.  A 3D design with SolidWorks and comparison of both fiber characteristics are presented. Based on the 3D designed model, users are analyzed on their perspective and searching information which benefits telecommunication’s company. Technical calculations like core-cladding diameter ratio in microns are animated. The propagation of light in 3D single mode and multimode fiber is simulated using SolidWorks animator that presents it real fiber conditions. Result presents 10 most country searching used of both fiber cables and the difference in users search for both cables. A number of user’s search presents 3% more of multimode than single mode fiber search cases. This research is significant in presenting an animator of single and multimode fiber to users of network infrastructure development especially network developers and Telecommunications Company which can present it lively with animator transitions.