Emad Hmood Salman
University of Diyala

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Compressive spectrum sensing using two-stage scheme for cognitive radio networks Montadar Abas Taher; Mohammad Z. Ahmed; Emad Hmood Salman
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (551.486 KB) | DOI: 10.11591/ijece.v10i6.pp5899-5908

Abstract

The modern applications of communications that use wideband signals suffer the lacking since the resources of this kind of signals are limited especially for fifth generation (5G). The Compressive Spectrum Sensing (COMPSS) techniques address such issues to reuse the detected signals in the networks and applications of 5G. However, the raw techniques of COMPSS have low compression ratio and high computational complexity rather than high level of noise variance. In this paper, a hybrid COMPSS scheme has been developed for both non-cooperative and cooperative cognitive radio networks. The proposed scheme compiles on discrete wavelet transform – single resolution (DWT-SR) cascaded with discrete cosine transform (DCT). The first is constructed according to the pyramid algorithm to achieve 50% while the second performed 30% compression ratios. The simulation and analytic results reveal the significant detection performance of the proposed technique is better than that of the raw COMPSS techniques.
The impact of M-ary rates on various quadrature amplitude modulation detection Waleed Algriree; Nasri Sulaiman; Maryam Isa; Ratna Kalos Zakia Sahbudin; Siti Lailatul Mohd Hassan; Emad Hmood Salman
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i1.pp483-492

Abstract

The 5G system-based cognitive radio network is promised to meet the requirements of huge data applications with spectrum. However, the M-ary effect on the detection has not been thoroughly investigated. In this paper, an M-ary of quadrature amplitude modulation detection system is studied. Many rates are used in this study 4, 16, 64, and 256 constellation points. The detection system is applied to cooperative spectrum sensing to enhance the performance of detection for various rates of M-ary with low signal-to-noise ratio (SNR). Further, three kinds of signals based 5G system are sensed: filtered-orthogonal frequency division multiplexing (F-OFDM), filter bank multi-carrier (FBMC), and universal filtered multi-carrier (UFMC). The best detection performance is obtained when the M-ary=4 and number of SUs=50 user, whereas the worst detection performance is obtained when the M-ary=256 and number of SUs=10 user, as revealed in the simulation results. In addition, the detection performance for the F-OFDM signal is better than that of UFMC and FBMC signals for SNR <0 dB.