Azziddin M. Razali
Universiti Teknikal Malaysia Melaka (UTeM)

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

The direct power control of three-phase AC-DC converter under unbalance voltage condition Nor Azizah Yusoff; Azziddin M. Razali; Kasrul Abdul Karim; Auzani Jidin
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 6: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (622.093 KB) | DOI: 10.11591/ijece.v9i6.pp5107-5114

Abstract

This paper has presents the integrated approach for three-phase PWM AC-DC converter for obtaining the symmetrical components under unbalanced supply condition. The input structures for conventional direct power control have been modified with three simpler sequence networks instead it coupled by a detailed three-phase system method. In the cases of an unbalanced three-phase system, it causes the presence of unbalanced current and voltages thus produce the negative components on the grid voltage. Otherwise, the unbalance voltage in a three-phase power system causes severe performance degradation of a grid-connected VSI. Therefore, the imbalance voltage can be resolved by separating from the individual elements of voltage and current into symmetrical components called as a sequencing network. Consequently, the input power is relatively improved during unbalanced condition. It proven through the measurement of Total Harmonic Distortion (THD) from the conventional direct power control in individual elements is much higher compared than it resolved in separate components. Therefore, three symmetrical components are necessary for imbalance supply condition to obtaining almost sinusoidal grid currents.
Analysis of direct power control AC-DC converter under unbalance voltage supply for steady-state and dynamic response Nor Azizah Mohd Yusoff; Azziddin M. Razali; Kasrul Abdul Karim; Raja Nor Firdaus Kashfi Raja Othman; Auzani Jidin; Nor Aishah Md Zuki; Nurfaezah Abdullah
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 4: August 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (965.145 KB) | DOI: 10.11591/ijece.v10i4.pp3333-3342

Abstract

This paper presents an analysis of Direct Power Control (DPC) technique for the Three-Phase Pulse Width Modulation (PWM) AC-DC converter under unbalanced supply condition. Unbalance condition will cause the presence of unbalanced current and voltages thus produce the negative components on the grid voltage as well as severe performance degradation of a grid connected Voltage Source Inverter (VSI). The input structures for conventional DPC has been modified with a three simpler sequence networks instead of coupled by a detailed Three-Phase system method. The imbalance voltage can be resolved by separating from the individual elements of voltage and current into symmetrical components called Sequence Network. Consequently, the input power relatively improved during unbalanced condition almost 70% through the measurement of Total Harmonic Distortion (THD) from the conventional Direct Power Control (DPC) in individual elements which is higher compared to separate components. Hence, several analyses are performed in order to analyze the steady state and dynamic performance of the converter, particularly during the load and DC voltage output reference variations.
A new switching look-up table for direct power control of grid connected 3L-NPC PWM rectifier Azziddin M. Razali; Nor Azizah Yusoff; Kasrul Abdul Karim; Auzani Jidin; Tole Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1413-1421

Abstract

This paper presents a comprehensive and systematic approach in developing a new switching look-up table for direct power control (DPC) strategy applied to the three-phase grid connected three-level neutral-point clamped (3L-NPC) pulse width modulated (PWM) rectifier. The term of PWM rectifier used in this paper is also known as AC-DC converter. The approach provides detailed information regarding the effects of each multilevel converter space vector to the distribution of input active and reactive power in the converter system. Thus, the most optimal converter space vectors are able to be selected by the switching look-up table, allowing smooth control of the active and reactive powers for each sector. In addition, the proposed DPC utilizes an NPC capacitor balanced strategy to enhance the performance of front-end AC-DC converter during load and supply voltage disturbances. The steady state as well as the dynamic performances of the proposed DPC are presented and analyzed by using MATLAB/Simulink software. The results show that the AC-DC converter utilizing the new look-up table is able to produce almost sinusoidal line currents with lower current total harmonic distortion, unity power factor operation, adjustable DC-link output voltage and good dynamic response during load disturbance.