Claim Missing Document
Check
Articles

Found 3 Documents
Search

Effect of silica nanofiller in cross-linked polyethylene as electrical tree growth inhibitor Nazatul Shiema Moh Nazar; Noor Syazwani Mansor; Umar Khayam; Nor Asiah Muhamad; Mariatti Jaafar Mustapha; Amir Izzani Mohamed; Mohamad Kamarol Mohd Jamil
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp2256-2263

Abstract

One of the main phenomena that contributes to the non-success of cable insulation made of cross-linked polyethylene (XLPE) is electrical treeing. To improve the XPLE cable insulation, the use of nanofiller has been introduced. Adding the nanofiller in the based composite offers better cable lifetime and resistance to deal with the cable failure. One of the potential nanofillers that can increase the insulation performance of XLPE cable is silica nanofiller. To this extent, the studies on silica nanofiller in XLPE are focusing on the impulse breakdown strength, dielectric loss, permittivity, space charge, alternating current (AC), and partial discharge. The studies reveal that the dielectric properties of the XLPE nanocomposite have significant improvement. Therefore, this work investigates the effect of various concentrations of silica nanofiller in XLPE composite as electrical tree inhibitor. The concentrations of silica nanofiller in XLPE were 0.25 wt%, 0.5 wt%, 0.75 wt%, 1.0 wt%, 1.25 wt%, 1.5 wt%, and 1.75 wt%. The silica nanofillers have 96%-99% purity, 20-30 nm sizes and the shapes are spherical. As a result, the XLPE composite containing 1.5 wt% silica nanofiller demonstrate higher tree inception voltage and detaining the tree propagation speed, which could be considered as an inhibitor medium of electrical tree growth.
Examination on the Denoising Methods for Electrical and Acoustic Emission Partial Discharge Signals in Oil Ahmad Hafiz Mohd Hashim; Norhafiz Azis; Jasronita Jasni; Mohd Amran Mohd Radzi; Masahiro Kozako; Mohamad Kamarol Mohd Jamil; Zaini Yaakub
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 11, No 3: September 2023
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v11i3.4463

Abstract

Partial discharge (PD) measurements either through electrical or acoustic emission approaches can be subjected to noises that arise from different sources. In this study, the examination on the denoising methods for electrical and acoustic emission PD signal is carried out. The PD was produced through needle-plane electrodes configuration. Once the voltage reached to 30 kV, the electrical and acoustic emission PD signals were recorded and additive white Gaussian noise (AWGN) was introduced. These signals were then denoised using moving average (MA), finite impulse response (FIR) low/high-pass filters, and discrete wavelet transform (DWT) methods. The denoising methods were evaluated through ratio to noise level (RNL), normalized root mean square error (NRMSE) and normalized correlation coefficient (NCC). In addition, the computation times for all denoising methods were also recorded. Based on RNL, NRMSE and NCC indexes, the performances of the denoising methods were analyzed through normalization based on the coefficient of variation (𝐶𝑣). Based on the current study, it is found that DWT performs well to denoise the electrical PD signal based on the RNL and NRMSE 𝐶𝑣 index while MA has a good denoising NCC and computation time 𝐶𝑣 index for acoustic emission PD signal.
A novel method of overvoltage suppression due to de-energization of shunt reactor in high voltage system Mazyed A. Al-Tak; Mohd Fadzil Bin Ain; Omar Sh. Al-Yozbaky; Mohamad Kamarol Mohd Jamil
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 14, No 4: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v14.i4.pp2134-2147

Abstract

Substations usually employ shunt reactors to reduce the reactive power of systems. Due to current chopping when the shunt reactor is shut off, a high frequency and amplitude overvoltage is generated. This study was aimed at eliminating switching-related overvoltages in shunt reactors so as to maintain the equipment, prevent insulation failure, and avoid reignition. Therefore, the circuit was modified according to the suggested mitigation strategy to verify that transient overvoltages are suppressed by the circuit breaker and shunt reactor. With a view to evaluate the existing chopping caused by the switching of reactor bank, the alternative transients program (ATP-Draw) model was used to simulate the transients resulting from switching a shunt reactor. This work has been put into practice for various current chopping values. The collected results of the simulation showed that the proposed model was significantly highlighted for the suppression of overvoltages, with the voltage across the circuit breaker being reduced from 679 KV to 478 KV at a current chopping value of 5 A and from 351 KV to 152 KV across the shunt reactor.