Claim Missing Document
Check
Articles

Found 2 Documents
Search

Primary frequency control applied to the wind turbine based on the DFIG controlled by the ADRC Issam Minka; Ahmed Essadki; Sara Mensou; Tamou Nasser
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (735.352 KB) | DOI: 10.11591/ijpeds.v10.i2.pp1049-1058

Abstract

In this paper, we study the primary frequency control that allows the variable speed Aeolian to participate in the frequency regulation when a failure affects the network frequency. This method based on the control of the generator rotational speed or the control of pitch angle makes it possible to force the wind turbine to produce less power than its maximum available power, consequently we will create an active power reserve. This wind turbine must inject into the grid a part of its power reserve when the frequency drops, in contrary the wind turbine reserves more of energy. So, this work presents the performances of this control strategy for the different wind speed value. The results are obtained by a simulation in the MATLAB/SIMULINK environment.
Performance of a vector control for DFIG driven by wind turbine: real time simulation using DS1104 controller board Sara Mensou; Ahmed Essadki; Issam Minka; Tamou Nasser; Badr Bououlid Idrissi; Lahssan Ben Tarla
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v10.i2.pp1003-1013

Abstract

In this research paper we investigate the modelling and control of a doubly fed induction generator (DFIG) driven in rotation by wind turbine, the control objectives is to optimize capture wind, extract the maximum of the power generated to the grid using MPPT algorithm (Maximum Power Point Tracking) and have a specified reactive power generated whatever wind speed variable, the indirect field oriented control IFOC with the PI correctors was used to achieve such as decoupled control. To validate the dynamique performance of our controller the whole system was simulated using dSPACE DS1104 Controller board Real Time Interface (RTI) which runs in Simulink/MATLAB software and ControlDesk 4.2 graphical interfaces.