Anna Yudanur
Department of Electrical Engineering, Politeknik Negeri Padang, West Sumatera, Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

A Portable Device of Air Pollution Measurement Due to Highway Exhaust Emissions Using LabVIEW Programming - Andrizal; - Lifwarda; Anna Yudanur; Rivanol Chadry; - Hendrick
JOIV : International Journal on Informatics Visualization Vol 5, No 4 (2021)
Publisher : Politeknik Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.5.4.697

Abstract

A multisensory gas device integrated with myRIO module to measure air pollution has been established. This device is programmed using the LabVIEW programming language and can measure CO2, CO, NOX, and HC pollution on roads due to motor vehicle exhaust emissions. The device and the display system are made separately using wireless network communication to make this tool portable. Exhaust Gas Analyzer (EGA) was chosen for device calibration, obtaining 3.62% on the average error after performing 30 tests. The tests for measuring CO, CO2, NOX, and HC gas levels were conducted in several locations in Padang City and performed in the morning, afternoon, and evening. The result showed that the system properly measured CO2, CO, NOX and HC pollution in parks and highways in real-time in parts per million (ppm). It also displayed varied gas measurement results in terms of time and test location with a range of CO gas values at 0.034 – 0.15 ppm, CO2 151.3 – 815.2 ppm, NOX 0.0001 – 0.004 ppm, and HC 0.04 – 0.65 ppm. In addition, the system could perform well in providing warnings by automatically activating the air indicator alert at several measurement places when the gas content on one of the gas elements and compounds at a particular location has exceeded the threshold for the clean air category. Thus, this device can be used as initial research to build a real-time air pollution measurement system using the Internet of Things (IoT).