U. U. Sheikh
Universiti Teknologi Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Human Re-identification with Global and Local Siamese Convolution Neural Network K. B. Low; U. U. Sheikh
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 15, No 2: June 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v15i2.6121

Abstract

Human re-identification is an important task in surveillance system to determine whether the same human re-appears in multiple cameras with disjoint views. Mostly, appearance based approaches are used to perform human re-identification task because they are less constrained than biometric based approaches. Most of the research works apply hand-crafted feature extractors and then simple matching methods are used. However, designing a robust and stable feature requires expert knowledge and takes time to tune the features. In this paper, we propose a global and local structure of Siamese Convolution Neural Network which automatically extracts features from input images to perform human re-identification task. Besides, most of the current human re-identification task in single-shot approaches do not consider occlusion issue due to lack of tracking information. Therefore, we apply a decision fusion technique to combine global and local features for occlusion cases in single-shot approaches.
Performance Evaluation of Centralized Reconfigurable Transmitting Power Scheme in Wireless Network-on-chip M. S. Rusli; A. A. H. Ab Rahman; U. U. Sheikh; N. Shaikh Husin; Michael L. P. Tan; T. Andromeda; M. N. Marsono
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 6: December 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i6.9306

Abstract

Network-on-chip (NoC) is an on-chip communication network that allows parallel communication among all cores to improve inter-core performance. Wireless NoC (WiNoC) introduces long-range and high bandwidth radio frequency (RF) interconnects that can possibly reduce the multi-hop communication of the planar metal interconnects in conventional NoC platforms. In WiNoC, RF transceivers account for a significant power consumption, particularly its transmitter, out of its total communication energy. This paper evaluates the energy and latency performance of a closed loop power management mechanism which enables transmitting power reconfiguration in WiNoC based on number of erroneous received packets. The scheme achieves significant energy savings with limited performance degradation and insignificant impact on throughput.