Ahmed Hussein Ali
AL-Iraqia University

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

An effective classification approach for big data with parallel generalized Hebbian algorithm Ahmed Hussein Ali; Royida A. Ibrahem Alhayali; Mostafa Abdulghafoor Mohammed; Tole Sutikno
Bulletin of Electrical Engineering and Informatics Vol 10, No 6: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i6.3135

Abstract

Advancements in information technology is contributing to the excessive rate of big data generation recently. Big data refers to datasets that are huge in volume and consumes much time and space to process and transmit using the available resources. Big data also covers data with unstructured and structured formats. Many agencies are currently subscribing to research on big data analytics owing to the failure of the existing data processing techniques to handle the rate at which big data is generated. This paper presents an efficient classification and reduction technique for big data based on parallel generalized Hebbian algorithm (GHA) which is one of the commonly used principal component analysis (PCA) neural network (NN) learning algorithms. The new method proposed in this study was compared to the existing methods to demonstrate its capabilities in reducing the dimensionality of big data. The proposed method in this paper is implemented using Spark Radoop platform.
Optimized machine learning algorithm for intrusion detection Royida A. Ibrahem Alhayali; Mohammad Aljanabi; Ahmed Hussein Ali; Mostafa Abdulghfoor Mohammed; Tole Sutikno
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 1: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i1.pp590-599

Abstract

Intrusion detection is mainly achieved by using optimization algorithms. The need for optimization algorithms for intrusion detection is necessitated by the increasing number of features in audit data, as well as the performance failure of the human-based smart intrusion detection system (IDS) in terms of their prolonged training time and classification accuracy. This article presents an improved intrusion detection technique for binary classification. The proposal is a combination of different optimizers, including Rao optimization algorithm, extreme learning machine (ELM), support vector machine (SVM), and logistic regression (LR) (for feature selection & weighting), as well as a hybrid Rao-SVM algorithm with supervised machine learning (ML) techniques for feature subset selection (FSS). The process of selecting the least number of features without sacrificing the FSS accuracy was considered a multi-objective optimization problem. The algorithm-specific, parameter-less concept of the proposed Rao-SVM was also explored in this study. The KDDCup 99 and CICIDS 2017 were used as the intrusion dataset for the experiments, where significant improvements were noted with the new Rao-SVM compared to the other algorithms. Rao-SVM presented better results than many existing works by reaching 100% accuracy for KDDCup 99 dataset and 97% for CICIDS dataset.
The effectiveness of big data classification control based on principal component analysis Mostafa Abdulghafoor Mohammed; Mostafa Mahmood Akawee; Ziyad Hussien Saleh; Raed Abdulkareem Hasan; Ahmed Hussein Ali; Tole Sutikno
Bulletin of Electrical Engineering and Informatics Vol 12, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i1.4405

Abstract

Large-scale datasets are becoming more common, yet they can be challenging to understand and interpret. When dealing with big datasets, principal component analysis (PCA) is used to minimize the dimensionality of the data while maintaining interpretability and avoiding information loss. It accomplishes this by producing new uncorrelated variables that gradually reduce the variance of the system. In the field of data analysis, PCA is a multivariate statistical technique commonly used to obtain rules explaining the separation of groups in a given situation. Classes are predicted using a classification algorithm, a supervised learning technique that indicates which type of data points will be presented. Creating a classification model using classification algorithms is required before any successful classification can be achieved. It is possible to predict the future using a variety of categorized strategies. It is necessary to reduce the dimensionality of data sets using the PCA approach. This article will begin by introducing the basic ideas of PCA and discussing what it can and cannot do. It will then describe some variants of PCA and their application and then shows how PCA improves the performance using a series of experiments.