Siti Normi Zabri
Universiti Teknikal Malaysia Melaka

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Wide-band metamaterial perfect absorber through double arrow shape printed on a thin dielectric Siti Adlina Md Ali; Maisarah Abu; Siti Normi Zabri; Shipun Anuar Hamzah
Bulletin of Electrical Engineering and Informatics Vol 10, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i5.3154

Abstract

A wide-band metamaterial perfect absorber was introduced. The dual arrow shapes and the ground plane were in between the 0.0035λ TLY-3. Lump element technique was applied to enhance the absorption bandwidth, which was connected between both of the arrow structures. The limitation during fabrication process in using lump element, had seriously restricted its practical applications for microwave absorption. Then, a very thin line was connected between both arrow structures to represent the resistance by lump element which was expected to ease the fabrication process and practical applications as well. Four cases were analyzed: double arrow, double arrow with lump connected, double arrow with lump connected and 9 mm air gap, and thin line connected with 6 mm air gap. The fourth case achieved the highest operational absorbency frequency, which developed about 7.38 GHz (3.87 GHz to 11.25 GHz) approximately to 7.38 GHz. Three resonant frequencies were achieved; 4.17 GHz, 6.09 GHz and 10.30 GHz with perfect absorbency. These properties are expected to be used in practical applications such as satellite and radar communications transmission. These properties of the metamaterial absorber could increase the functionality of the metamaterial absorber to be used in any application especially in reducing radar cross section for stealth application.
A Wideband mm-Wave Printed Dipole Antenna for 5G Applications Dewan Atiqur Rahman; Sarah Yasmin Mohamad; Norun Abdul Malek; Dewan Arifur Rahman; Siti Normi Zabri
Indonesian Journal of Electrical Engineering and Computer Science Vol 10, No 3: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v10.i3.pp943-950

Abstract

In this paper, a wideband millimeter-wave (mm-Wave) printed dipole antenna is proposed to be used for fifth generation (5G) communications. The single element antenna exhibits a 36 GHz bandwidth with more than 85.71% fractional bandwidth (for S11 <-10 dB) which covers six of the 5G candidate frequencies; 24 GHz, 25 GHz, 28 GHz, 32 GHz, 38 GHz and 40 GHz. The antenna also exhibits an average gain of 5.34 dB with a compact size of 7.35 x 5.85 mm2. The antenna is further designed to be an array with eight elements and manage to increase the gain of the antenna with an average of 12.63 dB, a fractional bandwidth of 81.48% and linearly-polarized radiation pattern.