Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Economic-emission load dispatch for power system operation using enhanced sunflower optimization Hazwani Mohd Rosli; Syahirah Abd Halim; Lilik Jamilatul Awalin; Seri Mastura Mustaza
Indonesian Journal of Electrical Engineering and Computer Science Vol 27, No 1: July 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v27.i1.pp1-10

Abstract

Conventional thermal power plant uses limited sources of gas, fuel or coal which contributes to the rise of air pollution. Thus, it is crucial to efficiently use the natural sources and minimize the emissions of greenhouse gases and other pollutants. This paper presents an optimal economic dispatch considering three factors which are cost of generation, loss of power transmission and amount of emission for an efficient operation of power generation. Enhanced sunflower optimization (ESFO) algorithm is applied to determine the solution for three different cases: economic load dispatch, emission load dispatch and economic-emission load dispatch. The optimal solution based on the minimum generation cost and emission is obtained for the IEEE 6-unit test system using MATLAB software
Wide area monitoring system control management of the IEEE-14 bus system using least square support vector regression Lilik Jamilatul Awalin; Syahirah Abd Halim; Nor Azuana Ramli; Jafferi Bin Jamaludin; Mohd Syukri Ali
Indonesian Journal of Electrical Engineering and Computer Science Vol 27, No 2: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v27.i2.pp780-792

Abstract

The wide area monitoring system (WAMS) records and monitors every fault or disturbance that occurs in a power system network using phasor measuring units (PMUs). Extensive monitoring of the condition of the electrical power system can ensure the sustainability of reliable energy. The accuracy of the PMUs placement can be determined using the least square support vector regression (LS-SVR) technique. The primary goal of this study is to assess the level of accuracy of the PMUs placement using mean square error (MSE). First, the IEEE-14 bus system equipped with PMUs was built in Matlab software using Simulink. The MSE of the PMUs was then calculated using the LS-SVR. The results revealed that the lower the MSE, the better the PMUs placement. It was also observed that placing the PMUs on bus 2, bus 6, and bus 9 produced the lowest value of MSE.
Fault Distance Identification Using Impedance and Matching Approaches on Distribution Network Lilik Jamilatul Awalin; H. Mokhlis; M. K. Rahmat; Sophi Shilpa; Fadi Albatsh; Bazilah Ismail
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 3: December 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i3.pp770-778

Abstract

In this paper, impedance based method and matching approaches were used separately to detect three phase to ground fault (LLLGF). In order to observe the accuracy of each method, Non-homogeneous distribution network was used as a tested network. Actual data from TNB (Tenaga National Berhad) Malaysia was adopted to model the network by using PSCAD/EMTDC simulation program.  Both methods were tested to observe the accuracy of fault distance estimation. The comparison result shows different accuracy for each section which simulated in the middle of section. Based on the complexity of the distribution network, it possible to contribute difficulty to obtain the maximum accuracy. The result was obtained through the complete process which involves the database formation acquired through the PSCAD/EMTDC software simulator and the fault location distance calculation carried out by the MATLAB software.
A practical method to design the solar photovoltaic system applied on residential building in Indonesia Prisma Megantoro; Pinto Anugrah; Yusrizal Afif; Lilik Jamilatul Awalin; P. Vigneshwaran
Indonesian Journal of Electrical Engineering and Computer Science Vol 23, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v23.i3.pp1736-1747

Abstract

The use of solar PV system in Indonesia has expanded to various field and area. One example is residential buildings in urban areas. This article discusses calculation methods for designing a solar power generation system that is applied to residential buildings, such as homes, offices, or colleges. Electricity generated from the solar home system (SHS) is used to support many kinds of electrical equipments, where the electrical equipments are used by building occupants in their daily life. The calculation method is considered from the potential of solar energy and the reliability of the on-site system to generate electricity. The system is designed in an off-grid topology by exchanging connections with the public electricity grid owned by PLN. Calculation results shows that this SHS has a generation capacity of 1 kWp, 24 V 300 Ah battery storage, and a 200 W inverter. This SHS can reduce electricity usage in this sector by 18.2 kWh in average every month.
Improved newton-raphson with schur complement methods for load flow analysis Lea Tien Tay; William Ong Chew Fen; Lilik Jamilatul Awalin
Indonesian Journal of Electrical Engineering and Computer Science Vol 16, No 2: November 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v16.i2.pp699-605

Abstract

The determination of power and voltage in the power load flow for the purpose of design and operation of the power system is very crucial in the assessment of actual or predicted generation and load conditions. The load flow studies are of the utmost importance and the analysis has been carried out by computer programming to obtain accurate results within a very short period through a simple and convenient way. In this paper, Newton-Raphson method which is the most common, widely-used and reliable algorithm of load flow analysis is further revised and modified to improve the speed and the simplicity of the algorithm. There are 4 Newton-Raphson algorithms carried out, namely Newton-Raphson, Newton-Raphson constant Jacobian, Newton-Raphson Schur Complement and Newton-Raphson Schur Complement constant Jacobian. All the methods are implemented on IEEE 14-, 30-, 57- and 118-bus system for comparative analysis using MATLAB programming. The simulation results are then compared for assessment using measurement parameter of computation time and convergence rate. Newton-Raphson Schur Complement constant Jacobian requires the shortest computational time.