Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementasi Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier M. Syukri Mustafa; Muh Rizky Ramadhan; Angelina P. Thenata
Creative Information Technology Journal Vol 4, No 2 (2017): Februari - April
Publisher : UNIVERSITAS AMIKOM YOGYAKARTA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (330.7 KB) | DOI: 10.24076/citec.2017v4i2.106

Abstract

Abstrak Penelitian ini difokuskan untuk mengevaluasi kinerja akademik mahasiswa STMIK Dipanegara Makassar pada dua tahun pertama dengan menggunakan teknik data mining algoritma Naive Bayes Classifier (NBC) untuk membentuk tabel probabilitas sebagai dasar proses klasifikasi kinerja akademik mahasiswa yang kelulusannya akan diklasifikasikan dan memberikan rekomendasi untuk proses kelulusan tepat waktu yang paling tepat dengan nilai optimal berdasarkan histori nilai yang telah ditempuh mahasiswa. Sampel nilai yang digunakan untuk data latih dan testing adalah nilai mahasiswa angkatan 2008-2011 yang sudah dinyatakan lulus, sedangkan mahasiswa angkatan 2013-2014 dan belum lulus akan digunakan sebagai data target. Hasil yang diperoleh dari penelitian ini menunjukkan bahwa faktor yang paling mempengaruhi penentuan klasifikasi kinerja akademik seorang mahasiswa adalah Indeks Prestasi (IP) pada semester 1,2,3,4 dan jenis kelamin, sehingga faktor tersebut dapat menjadi bahan evaluasi terhadap pihak pengelola STMIK Dipanegara. Pengujian pada beberapa data mahasiswa angkatan 2008-2011 yang diambil secara acak, algoritma NBC menghasilkan nilai akurasi 92,3%.