Claim Missing Document
Check
Articles

Found 2 Documents
Search

Hardware Simulation of Rear-End Collision Avoidance System Based on Fuzzy Logic Noor Cholis Basjaruddin; Didin Saefudin; Anggun Pancawati
Jurnal Rekayasa Elektrika Vol 16, No 1 (2020)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1163.943 KB) | DOI: 10.17529/jre.v16i1.15107

Abstract

Rear-end collisions are the most common type of traffc accident. On the highway, a real-end collision may involve more than two vehicles and cause a pile-up or chain-reaction crash. Referring to data released by the Australian Capital Territory (ACT), rear-end  collisions which occurred throughout 2010 constituted as much as 43.65% of all collisions. In most cases, these rear-end collisions are caused by inattentive drivers, adverse road conditions and poor following distance. The Rear-end Collision Avoidance System (RCAS) is a device to help drivers to avoid rear-end collisions. The RCAS is a subsystem of Advanced Driver Assistance Systems (ADASs) and became an important part of the driverless car. This paper discusses a hardware simulation of a RCAS based on fuzzy logic using a remote control car. The Mamdani method was used as a fuzzy inference system and realized by using the Arduiono Uno microcontroller system. Simulation results showed that the fuzzy logic algorithm of RCAS can work as designed.
Hardware Simulation of Rear-End Collision Avoidance System Based on Fuzzy Logic Noor Cholis Basjaruddin; Didin Saefudin; Anggun Pancawati
Jurnal Rekayasa Elektrika Vol 16, No 1 (2020)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v16i1.15107

Abstract

Rear-end collisions are the most common type of traffc accident. On the highway, a real-end collision may involve more than two vehicles and cause a pile-up or chain-reaction crash. Referring to data released by the Australian Capital Territory (ACT), rear-end  collisions which occurred throughout 2010 constituted as much as 43.65% of all collisions. In most cases, these rear-end collisions are caused by inattentive drivers, adverse road conditions and poor following distance. The Rear-end Collision Avoidance System (RCAS) is a device to help drivers to avoid rear-end collisions. The RCAS is a subsystem of Advanced Driver Assistance Systems (ADASs) and became an important part of the driverless car. This paper discusses a hardware simulation of a RCAS based on fuzzy logic using a remote control car. The Mamdani method was used as a fuzzy inference system and realized by using the Arduiono Uno microcontroller system. Simulation results showed that the fuzzy logic algorithm of RCAS can work as designed.