Pungky Ayu Artiani
National Nuclear Energy Agency of Indonesia (BATAN)

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

CRITICALITY SAFETY ANALYSIS OF THE DRY CASK DESIGN WITH AIR GAPS FOR RDNK SPENT PEBBLE FUELS STORAGECriticality Safety Analysis of the Dry Cask Design with Air Gaps for RDNK Spent Pebble Fuels Storage Pungky Ayu Artiani; Yuli Purwanto; Aisyah Aisyah; Ratiko Ratiko; Jaka Rachmadetin; Kuat Heriyanto
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 23, No 3 (2021): October (2021)
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/tdm.2021.23.3.6355

Abstract

Reaktor Daya Non-Komersial (RDNK) with a 10 MW thermal power has been proposed as one of the technology options for the first nuclear power plant program in Indonesia. The reactor is a High Temperature Gas-Cooled Reactor-type with spherical fuel elements called pebbles. To support this program, it is necessary to prepare dry cask to safely store the spent pebble fuels that will be generated by the RDNK. The dry cask design has been proposed based on the Castor THTR/AVR but modified with air gaps to facilitate decay heat removal. The objective of this study is to evaluate criticality safety through keff  value of the proposed dry cask design for the RDNK spent fuel. The keff  values were calculated using MCNP5 program for the dry cask with 25, 50, 75, and 100% of canister capacity. The values were calculated for dry casks with and without air gaps in normal, submerged, tumbled, and both tumbled and submerged conditions. The results of calculated keff  values for the dry cask with air gaps at 100% of canister capacity from the former to the latter conditions were 0.127, 0.539, 0.123, and 0.539, respectively. These keff values were smaller than the criticality threshold value of 0.95. Therefore, it can be concluded that the dry cask with air gaps design comply the criticality safety criteria in the aforementioned conditions.