Bagus Sapto Mulyanto
Teknik Geofisika Universitas Lampung

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

OPTIMALISASI PENCITRAAN STRUKTUR BAWAH PERMUKAAN MENGGUNAKAN METODE KIRCHHOFF PRE-STACK TIME MIGRATION PADA DATA SEISMIK LAUT WETAR Syamsurijal Rasimeng; Amelia Isti Ekarena; Bagus Sapto Mulyanto; Subarsyah Subarsyah; Andrian Wilyan Djaja
JGE (Jurnal Geofisika Eksplorasi) Vol 6, No 2 (2020)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v6i2.67

Abstract

Migration is one of the stages in seismic data processing aimed at returning the diffraction effect to the actual reflector point. The processing of a seismic data is adjusted to the existing problems in the data itself, so the accuracy in using the migration technique and determination of data processing parameters greatly affects the resulting seismic cross-section. Kirchhoff Pre-Stack Time Migration is one of the most used migration methods in seismic data processing because it shows better results than conventional stacking methods. The parameters that need to be noticed in the Kirchhoff migration are the migration aperture values. Based on this, variations of migration aperture values used are 75 m, 200 m and 512.5 m. The 512.5-m aperture migration value shows the best seismic cross-section results. This is evidenced by the capability in eliminating bowtie effects around CDP 600 up to CDP 800, eliminating diffraction effects around CDP 3900 to CDP 4050, and showing a seismic cross-section with better lateral resolution compared to the migration value of the aperture of 75 m and 200 m. Based on the seismic cross-section of migration results, the geological structure that can be identified is a fault that found in some CDP.
ANALISIS DEFORMASI PERMUKAAN MENGGUNAKAN METODE DInSAR (Differential Interferometry Synthetic Aperture Radar) PADA STUDI KASUS GEMPABUMI LOMBOK PERIODE AGUSTUS 2018 Muhammad Fikri Azhari; Karyanto Karyanto; Syamsurijal Rasimeng; Bagus Sapto Mulyanto
Jurnal Geofisika Eksplorasi Vol 6, No 2 (2020)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v6i2.68

Abstract

Lombok is located on the boundary of active tectonic plates, this is what caused the Lombok Earthquake on August, 2018. DInSAR is a remote sensing technology that utilizes radar satellites to measure the amount of deformation on the surface of the ground with sub-centimeter accuracy. This study aims to obtain the value of surface deformation after the earthquake that struck the Lombok region, in August 5, 2018 Earthquake and the August 19 2018 Earthquake and analyze impact and charateristics of the deformation that occurred in the two earthquakes. The research was carried out based on SAR Sentinel-1 image processing using SNAP Software, Google Earth and ArcGIS 10.3. Deformation that occurred after the Lombok earthquake on August 5, 2018 caused an increase in land level (uplift) on the coast of North Lombok with a deformation value of 15-30 cm to the Line of Sight (LOS). Whereas deformation in the form of subsidence occurs in the City of Mataram and West Lombok with a value of -6 to -16 cm to the Line of Sight (LOS). While the deformation that occurred after the Lombok earthquake on August 19, 2018, caused an increase in land level (uplift) on the East Lombok coast with a deformation value of 18 to 31 cm to the Line of Sight (LOS). Whereas deformation in the form of subsidence occurs in Central Lombok with a value of -3 to -17 cm to the Line of Sight (LOS).