Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimasi Media Kultivasi Senyawa Aktif Penicillium lagena sebagai Antifungi Patogen Phellinus lamaoensis dengan Menggunakan Respon Surface Methodology Rofiq Sunaryanto; Diana Nurani; Asep Riswoko; Siti Nabilah; Khaswar Syamsu
Seminar Nasional Lahan Suboptimal 2018: Prosiding Seminar Nasional Lahan Suboptimal "Tantangan dan Solusi Pengembangan PAJALE dan Kela
Publisher : Pusat Unggulan Riset Pengembangan Lahan Suboptimal (PUR-PLSO) Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (589.616 KB)

Abstract

Sunaryanto et al, 2019. Optimization of Penicillium lagena Medium Cultivation on Antifungal Pathogen of Phellinus lamaoensis using Response Surface Methodology. pp. 410-420. Phellinus lamaoensis (Murr.) Hein is fungal pathogen that can cause brown root rot disease in cocoa, tea, rubber, and coffee plants. Endophytic fungi, Penicillium lagena, isolated from bandotan (Ageratum conyzoides Linn.), medicinal plant, is able to inhibit the growth of pathogenic, P. lamaoensis. The effect of carbon source, nitrogen source, and mineral solution was studied. Lactose, yeast extract, and mineral solution were media components which showed significant effect toward production of P. lagena active compound. Composition optimization of these three medium components was done by response surface methodology (RSM). The Optimal response region of the significant factor was predicted by using a second order polynomial model with statistical design, central composite design (CCD). Higest production of P. lagena active compound by quadratic model was predicted to be 69.233% with medium composition 44.77 g L-1 lactose, 13.02 g L-1 yeast extract, and 15.95 mL L-1 mineral solution. Verification value in laboratory is 58.365%, lower 15.7% than its prediction. Optimization increase P. lagena active compound 9 fold compared to unoptimize media.
Production and Characterization of Thermoalkaliphilic Xylanase from Bacillus halodurans CM1 on Degumming Process of Ramie (Boehmeria nivea L.Gaud)Fiber as Textile Raw Material DEWI NANDYAWATI; DEA INDRIANI ASTUTI; NIKNIK NURHAYATI; ASEP RISWOKO; IS HELIANTI
Microbiology Indonesia Vol. 15 No. 3 (2021): September 2021
Publisher : Indonesian Society for microbiology

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5454/mi.15.3.3

Abstract

Ramie fiber is a potential raw material to substitute imported raw materials such as cotton. Due to its higher hemicellulose content, ramie fiber required hydrolysis in a process called degumming. Enzymatic degumming is environmentally friendly compared to traditional process which using chemicals. Alkalithermophilic xylanase have high ability in hemicellulose hydrolysis. The production of xylanase was conducted by submerged fermentation of Bacillus halodurans CM1 in 20L bioreactor using Mamo and corncob medium with optimum conditions at 50°C, pH 9, 150 RPM and 1 vvm. The optimum specific activity of xylanase measured by Bailey method at 70°C and pH 9 is 475.41 U/mg. Xylanase was stable at 50°C, pH 9 and relatively stable to K+, Na2+, Co2+ and Ca2+ metal ions and Triton-X, Saba dan Tween-80 surfactants. Degumming process was carried out by immersing ramie fibers in formulated degumming solution with vlot 1:20 at 50°C, 150 RPM and 180 minutes. The enzymatic degumming process may substitute or reduce the use of chemicals due to its significant effect on ramie fiber quality. Enzymatic and chemical degumming process reduce the weight of Ramie Fiber to 7.23 %, and 7.72 %, slightly higher than enzymatic degumming 7.15%. Enzymatic degumming maintains tensile strength at 27.51 %. Whiteness index enhanced to 2.99% enzymatically and 3.49% chemically. Keywords: Bacillus halodurans CM1, enzymatic degumming, ramie fiber, textile industry, thermoalkaliphilic xylanase