Norazimah Harun
Faculty of Chemical Engineering & Natural Resources, Universiti Malaysia Pahang, 26300 Gambang, Pahang

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Characterization of Ag-promoted Ni/SiO2 Catalysts for Syngas Production via Carbon Dioxide (CO2) Dry Reforming of Glycerol Norazimah Harun; Jolius Gimbun; Mohammad Tazli Azizan; Sumaiya Zainal Abidin
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (885.151 KB) | DOI: 10.9767/bcrec.11.2.553.220-229

Abstract

The carbon dioxide (CO2) dry reforming of glycerol for syngas production is one of the promising ways to benefit the oversupply crisis of glycerol worldwide. It is an attractive process as it converts carbon dioxide, a greenhouse gas into a synthesis gas and simultaneously removed from the carbon biosphere cycle. In this study, the glycerol dry reforming was carried out using Silver (Ag) promoted Nickel (Ni) based catalysts supported on silicon oxide (SiO2) i.e. Ag-Ni/SiO2. The catalysts were prepared through wet impregnation method and characterized by using Brunauer-Emmett-Teller (BET) surface area, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Thermo Gravimetric (TGA) analysis. The experiment was conducted in a tubular reactor which condition fixed at 973 K and CO2:glycerol molar ratio of 1, under atmospheric pressure. It was found that the main gaseous products are H₂, CO and CH4 with H₂:CO molar ratio < 1.0. From the reaction study, Ag(5)-Ni/SiO2 results in highest glycerol conversion and hydrogen yield, accounted for 32.6% and 27.4%, respectively.