Claim Missing Document
Check
Articles

Found 2 Documents
Search

Evaluation of Operational Loading of the Light-Rail Transit (LRT) in Capital Region, Indonesia Djoko Wahyu Karmiadji; Muchamad Gozali; Anwar Anwar; Hedi Purnomo; Muji Setiyo; Ramli Junid
Automotive Experiences Vol 3 No 3 (2020)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1414.287 KB) | DOI: 10.31603/ae.v3i3.3882

Abstract

In 2015, the Indonesian government issued regulations to accelerate the implementation of integrated Light-Rail Transit (LRT) in the capital region and its surroundings. In order to ensure its operational safety, experimental work is required to test components’ strength of the manufactured LRT structures. Following the JIS 7105 standard test method, the strain and deflection of the structures were measured by vertical load, compression, rotation, and three-point load support test. The critical area estimated in the railroad structure were conducted according to the finite element method, in which strain gauges are installed in areas where the stress concentration exceeds nominal pressure, namely notches, bends, and junction areas. The result shows that the maximum stress on the LRT train structure occurs at the door, where maximum compressive strain value is -1082 μe » -75.74 MPa on the left and the maximum tensile strain value is 597 μe » 41.79 MPa at the right door. The results of fatigue load analysis represent the average stress (σm) and voltage amplitude (σa) at the coordinate system located in the Søderberg triangle. Meanwhile, the camber value with the full vertical load still has a positive value of 3.03 mm, which indicates a safe limit.
Comprehensive Analysis of Minibuses Gravity Center: A Post-Production Review for Car Body Industry Djoko Wahyu Karmiadji; Muchamad Gozali; Muji Setiyo; Thirunavukkarasu Raja; Tuessi Ari Purnomo
Mechanical Engineering for Society and Industry Vol 1 No 1 (2021)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (838.116 KB) | DOI: 10.31603/mesi.5250

Abstract

The center of gravity (CoG) on the minibus is one of the fundamental parameters that affect the operation of the vehicle to maintain traffic safety. CoG greatly affects vehicle maneuverability due to load transfer between the front and rear wheels, such as when turning, braking, and accelerating. Therefore, this research was conducted to evaluate the operational safety of minibusses produced by the domestic car body industry. The case study was conducted on a minibus with a capacity of 30 passengers to be used in a mining area. Investigations on CoG were carried out based on the minibus specification data, especially the dimensions and forces acting on the wheels. Minibusses as test objects were categorized in two conditions, namely without passengers and with 30 passengers. The test results are expressed in a coordinate system (x, y, z) which represents the longitudinal, lateral, and vertical distances to the center of the front wheel axle. CoG coordinate values ​​without passengers are (2194.92; 7.11; 1327.97) mm and CoG coordinates with full passengers (30 people) are (2388.52; 13.04; 1251.72) mm. The test results show that the change in CoG at full load is not significant which indicates the minibus is safe when maneuvering under normal conditions.