p-Index From 2019 - 2024
0.408
P-Index
This Author published in this journals
All Journal Automotive Experiences
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Experimental Investigation of Cooling Performance in Automotive Radiator using Al2O3-TiO2-SiO2 Nanofluids Anwar Ilmar Ramadhan; Wan Hamzah Azmi; Rizalman Mamat; Ery Diniardi; Tri Yuni Hendrawati
Automotive Experiences Vol 5 No 1 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (799.016 KB) | DOI: 10.31603/ae.6111

Abstract

The use of nanoparticle coolant fluid in the car radiator increases the rate of heat transfer and facilitates the reduction of the overall radiator size. In this study, heat transfer characteristics of tri-hybrid nanofluids-based water/EG (60:40) were analyzed experimental and compared with water/EG (60:40). Four different nanofluids concentrations were prepared by adding 0.05 to 0.3 vol.% of tri-hybrid nanofluids dispersed a mixture of water/ethylene glycol (60:40). Experiments were carried out by varying the flow rate of coolant between 2 to 12 LPM for working temperature of 70 °C, the velocity of airflow remained at an average of 4 m/s, to understand the effect of coolant flow rate on heat transfer. The results showed that the thermal performance of tri-hybrid nanofluids in a water/EG (60:40) mixture has been investigated for volume concentrations of up to 0.3% and working temperature of 70 °C. The maximum enhancement of heat transfer coefficient for air side is observed up to 23.8% at 0.05% volume concentration meanwhile for coolant side is observed at 39.7% at 0.3% volume concentration. The pressure drop and pumping power have the same pattern which increasing in volume concentrations.
Design of Experiment to Predict the Effects of Graphene Nanoplatelets Addition to Diesel Engine Performance Sarbani Daud; Mohd Adnin Hamidi; Rizalman Mamat
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.6263

Abstract

To minimise diesel exhaust emissions, a few methods are commonly used. Engine modifications, combustion optimisation, and exhaust system treatment components are among them. Fuel additives, such as zinc oxide, titanium oxide, aluminium oxide, and cerium oxide, are amongst the most effective methods to increase performance and reduce emissions. Even while positive performance and emission reduction outcomes have been demonstrated, there are worries concerning health toxicity effects. Carbon nanoparticles have been accepted as a fuel additive since they pose little risk to human health. A few studies have been undertaken to investigate the consequences of employing graphene nanoplatelets as fuel additives, thanks to advancements in graphene research. The findings of the study seemed encouraging. However, despite detecting the additive effects of graphene on performance, no more study has been undertaken to forecast the effects on engine performance. The objective of this study was to predict the effects of graphene nanoplatelets as an additive for diesel engines. The performance parameters of the trial were torque, power, BSFC, and BTE. Speed, load, and blend concentration are all considered in this model. Response surface methods and contour plotting with Minitab software were used to generate the prediction model. The results show that the prediction model is within 10% of the experimental data.