Claim Missing Document
Check
Articles

Found 3 Documents
Search

Comparative Analysis of Probability of Failure Determination Using Weibull Distribution and Generic Failure Frequencies on Heat Exchanger Tube Bundles Based on API 581 Dharma Gita Surya Prayoga; Dwi Priyanta; Nurhadi Siswantoro
International Journal of Marine Engineering Innovation and Research Vol 2, No 3 (2018)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (32.633 KB) | DOI: 10.12962/j25481479.v2i3.3576

Abstract

RBI analysis for heat exchanger tube has been explained by API 581. Two types of PoF determination using statistical data is provided to determine the PoF category. Both Weibull parameter and generic failure frequencies are the methods that will be analysis in this present study. PoF determination using Weibull distribution gives the exponential value of PoF in a certain of time. This method only consider failure modes and the failure rate of heat exchanger tube without considering possible active damage mechanisms in the tube. However PoF determination using generic failure frequencies gives more complex consideration. It considers not only failure and possible active damage mechanism, but also the effect of management system facilities of the heat exchanger on the integrity of the plant.
HAZOP Study and SIL Verification of Fuel Gas System in ORF Using IEC 61511 Standard and FTA Method Nurhadi Siswantoro; Dwi Priyanta; Afanda Dwi Ragil Risnavian; M. Badrus Zaman; Trika Pitana; Hari Prastowo; Semin Semin
International Journal of Marine Engineering Innovation and Research Vol 7, No 1 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (405.193 KB) | DOI: 10.12962/j25481479.v7i1.7609

Abstract

Safety is an important aspect of the industrial process. Failure of system and mechanism endanger both human and environmental safety. Safety is obligated to be implemented precisely and thoroughly to prevent failure consequences. One of the preventive implementations is to map out safety devices in the form of SIS (Safety Instrumented System) and other layers of protection. However, to acknowledge this safety device performance used SIL (Safety Integrity Level). This final research is intended to analyze Fuel Gas systems on Onshore Receiving Facilities (ORF). HAZOP (Hazard Operability Study) as process hazard analysis with deviation during the operation so that the risk level is known. SIL verification towards SIL target is SIL-2 refer to IEC 61511 standards by FTA (Fault Tree Analysis) method. From the HAZOP study can be concluded that over-pressure becomes a top hazard to all nodes due to the most severe consequences, the highest likelihood (medium risk). The calculation result of PFDavg is Node 1 (Fuel Gas Scrubber V-6060) is 6,22E-03, Node 2 (Fuel Gas Filter Separator S-6060A) is 1,24E-03, Node 3 (Fuel Gas Filter Separator S-6060B) is 1,24E-03, Node 4 (Fuel Gas Superheater E-6060) is 1,21E-03, and Node 5 (Instrument Gas Receiver V-6070) is 2,23E-03. The conclusion of this research shows that five components of the Fuel Gas System fulfill the SIL-2 target, therefore, doing a re-design to add a safety device is unnecessary
Determination of Maintenance Task on Rotary Equipment Using Reliability Centered Maintenance II Method Dwi Priyanta; Nurhadi Siswantoro; Rizky Agung Sukandar
International Journal of Marine Engineering Innovation and Research Vol 4, No 3 (2019)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (546.841 KB) | DOI: 10.12962/j25481479.v4i3.5572

Abstract

The process of natural gas into LNG (Liquefied Natural Gas) requires many steps and various types of chemical products. The process also produces waste. The Liquid Incinerator treats waste from LNG process. This unit often experiences damages which causes the plant do not work properly and even a down/trip problems due to the continuous operation and the absence of maintenance program, especially for rotary equipments. This causes environmental pollution because the waste is unprocessed and could have an impact on the increased cost to treat the waste elsewhere. One of approaches to analyze the causes of the damage, the impact and effective treatment for equipment is using Reliability Centered Maintenance (RCM). The RCM method is expected to be able to identify the primary and secondary functions of the system, possible failure function, Failure Mode and Effect Analysis (FMEA), and the maintenance actions on the plant. The FMEA result will be used to determine the proposed maintenance task. Based on the proposed maintenance task, the maintenance interval for each equipment is obtained. After RCM analysis is done on 4 equipments, liquid waste feeding pump (34-G-2), quencher pump (34-G-3), scrubber pump (34-G-4) and air compressor (34-K-4). For 34-G-2 failure mode, requires 78% preventive maintenance and 22% corrective maintenance, 34-G-3 requires 87% preventive maintenance and 13% corrective maintenance, 34-G-4 requires 87% preventive maintenance and 13% corrective maintenance and 34-K-4 requires 70% preventive maintenance and 30% corrective maintenance. Workpackage for each interval is created from every failure mode for each interval for maintenance / inspection.