Claim Missing Document
Check
Articles

Found 5 Documents
Search

Analysis Evacuation Route for KM Zahro Express on Fire Condition using Agent Based Modeling and Fire Dynamics Simulatior Trika Pitana; Muhammad Badrus Zaman; Dioco Carlos Kristian Perdana; Aleik Nurwahyudi
International Journal of Marine Engineering Innovation and Research Vol 1, No 4 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (653.327 KB) | DOI: 10.12962/j25481479.v1i4.2781

Abstract

Safety is the thing that needs to be preferred by users of transport, passengers should also understand about safety procedures and evacuation procedures in the means of transport. There have been many accidents that happen in the world of transport, particularly in the shipping world, from 2010 to 2016 is no more than 50 accidents of ships in accordance with the cause recorded by KNKT (Komisi Nasional Keselamatan Transportasi). On this research was discussed the evacuation time on the ship KM Zahro express that occurred earlier in the year 2017 in the Kepulauan Seribu, DKI Jakarta. Almost all passenger dead caused by fire from power source in engine room. This thesis will explaine about evacuation time and dangers from fire that interfere the process of evacuation. The methods used are Agent Based Modeling and Simulation (ABMS) and Fire Dynamics Simulator (FDS) for modeling fire simulation. Agent-Based Modeling software (pathfinder) and Fire Dynamics Simulator software (pyrosim) are used to calculate time evacuation in normal condition and fire condition of KM Zahro Express. Agent-Based Modeling and Simulator (ABMS) is a modeling method that aims to model complex problems based on real cases. Agent-Based Modeling and Simulator (ABMS) is designed to model a place that has a seat, path, exit door, humans, and others. Pyrosim is a graphical user interface for the Fire Dynamics Simulator (FDS). FDS models can predict smoke, temperature, carbon monoxide, and other substances during fires.  In this case the existing models can be used to plan and prepare an emergency if unwanted things happen. As well as using basic rules which refer to the Safety Of Life At Sea (SOLAS) and International Maritime Organization (IMO). Result of Evacuation simulation calculation on emergency conditions (two rear exit doors will be closed) that match at actually condition is 29,783 minutes (respon is not taken in this simulation), calculation results obtained from simulation of evacuation (Traveling Time) and at the count expanded feet according to the IMO formula (performance standard). From fire simulation could be analyzed the time and the amount of smoke on deck. It can be seen that in the 1800 seconds smoke levels produced in the relatively high place so disturbing in the evacuation process.
HAZOP Study and SIL Verification of Fuel Gas System in ORF Using IEC 61511 Standard and FTA Method Nurhadi Siswantoro; Dwi Priyanta; Afanda Dwi Ragil Risnavian; M. Badrus Zaman; Trika Pitana; Hari Prastowo; Semin Semin
International Journal of Marine Engineering Innovation and Research Vol 7, No 1 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (405.193 KB) | DOI: 10.12962/j25481479.v7i1.7609

Abstract

Safety is an important aspect of the industrial process. Failure of system and mechanism endanger both human and environmental safety. Safety is obligated to be implemented precisely and thoroughly to prevent failure consequences. One of the preventive implementations is to map out safety devices in the form of SIS (Safety Instrumented System) and other layers of protection. However, to acknowledge this safety device performance used SIL (Safety Integrity Level). This final research is intended to analyze Fuel Gas systems on Onshore Receiving Facilities (ORF). HAZOP (Hazard Operability Study) as process hazard analysis with deviation during the operation so that the risk level is known. SIL verification towards SIL target is SIL-2 refer to IEC 61511 standards by FTA (Fault Tree Analysis) method. From the HAZOP study can be concluded that over-pressure becomes a top hazard to all nodes due to the most severe consequences, the highest likelihood (medium risk). The calculation result of PFDavg is Node 1 (Fuel Gas Scrubber V-6060) is 6,22E-03, Node 2 (Fuel Gas Filter Separator S-6060A) is 1,24E-03, Node 3 (Fuel Gas Filter Separator S-6060B) is 1,24E-03, Node 4 (Fuel Gas Superheater E-6060) is 1,21E-03, and Node 5 (Instrument Gas Receiver V-6070) is 2,23E-03. The conclusion of this research shows that five components of the Fuel Gas System fulfill the SIL-2 target, therefore, doing a re-design to add a safety device is unnecessary
Components Acquaintance of Fuel Oil System Using Virtual Reality Application Hari Prastowo; Trika Pitana; Gusti Ngurah Putu Wibhu Ary Martha
International Journal of Marine Engineering Innovation and Research Vol 5, No 4 (2020)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (443.181 KB) | DOI: 10.12962/j25481479.v5i4.7677

Abstract

Indonesia is known as the biggest archipelagic nation on the planet and is between two significant seas. In a roundabout way, Indonesia has tremendous regional water when contrasted and the land territory itself. With this, obviously, it tends to be said that Indonesia has colossal potential in the oceanic area, particularly since the Indonesian sea domain has consistently been a worldwide transportation path. This potential should be used ideally by this country, considering the mechanical advancement in Indonesia itself can be supposed to be very quick. Innovation that is utilized carefully and applied to the sea world can give Indonesia benefits for a few areas, for example, the economy, industry, and even schooling. Innovation that can be used in the oceanic world, particularly in the field of transportation is PC illustrations innovation, which in its application can be utilized during the time spent to plan, fix and support, reproductions and preparing for training and others with the 3D display. Virtual Reality (VR) is a counterfeit world or can be said as a computerized world where everything in there is the consequence of representation made utilizing 3D innovation from the PC. Virtual Reality permits us to cooperate and encounter encounters that are practically like this present reality. The reason for this exploration or the last task is to use innovation that is growing quickly well in the learning cycle in the oceanic world. With Virtual Reality, it is conceivable to make new learning strategies for training, particularly in the presentation of segments of the fuel oil framework on the ship. Because of a few restrictions confronted when mentioning direct objective facts to the ship, including authorization or admittance to enter the ship, time is restricted. Along these lines, it is normal that utilizing Virtual Reality can help the learning cycle for training by making an application that can be utilized in perceiving and understanding the segments of the fuel oil framework on a ship.
The Usage of Crumb Rubber Filtration and UV Radiation for Ballast Water Treatment Trika Pitana; Maya Shovitri; Haris Nur Fauzi
International Journal of Marine Engineering Innovation and Research Vol 2, No 1 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (345.982 KB) | DOI: 10.12962/j25481479.v2i1.2610

Abstract

This research is aimed to build ship’s ballast water treatment prototipe that used to inactivate microbial water patogen in ballast water to produce unpolluted ballast water that can be standardised by IMO Ballast Water Management Convention. A simple concept that used in the development of this prototype is by draining ballast water with capacity at 5 lpm, 10 lpm and 20 lpm into alternative filtration crumb rubber and UV reactor. In the filtration process using crumb rubber, ballast water will be filtered with the precision filtration up to 50 micron, while in the UV reactor ballast water will be illuminated by UV-C with maksimum dose 16,58 mW/cm2. Finally,the study shows the performance of alternative filtration of crumb rubber and UV-C irradiation on microbial water phatogen, and at what UV-C dose ballast water treatment prototipe can inactivate  microbial water phatogens, which are complying with IMO Ballast Water Management Convention ANNEX D.This research is aimed to build ship’s ballast water treatment prototipe that used to inactivate microbial water patogen in ballast water to produce unpolluted ballast water that can be standardised by IMO Ballast Water Management Convention. A simple concept that used in the development of this prototype is by draining ballast water with capacity at 5 lpm, 10 lpm and 20 lpm into alternative filtration crumb rubber and UV reactor. In the filtration process using crumb rubber, ballast water will be filtered with the precision filtration up to 50 micron, while in the UV reactor ballast water will be illuminated by UV-C with maksimum dose 16,58 mW/cm2. Finally,the study shows the performance of alternative filtration of crumb rubber and UV-C irradiation on microbial water phatogen, and at what UV-C dose ballast water treatment prototipe can inactivate  microbial water phatogens, which are complying with IMO Ballast Water Management Convention ANNEX D.
Flooding Causes Analysis in The Engine Room of KM. Nusantara Akbar Trika Pitana; Hari Prastowo; Muhammad Badrus Zaman; Aleix Nurwahyudi; Rachmat Gunawan
International Journal of Marine Engineering Innovation and Research Vol 1, No 2 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (166.927 KB) | DOI: 10.12962/j25481479.v1i2.2054

Abstract

The study analyzes about the cause of the leak in KM Nusantara Akbar’s engine room. However, this research is focus on  leakage caused by shaft deflectio From the field data provided by the KNKT, know the cause of the leak is packing driven by a shaft deflection and therefore can not hold the rate of water. Analysis was done by a review of the technical and non-technical factors, because the scene of the ship accident was not purely due to technical factors but also non-technical factors. The first step is analyzing the ship document, such as the certificate of ship from classification, incident reports, docking report, ship crew certificates and other ship document. Then on the next step, the evidence that has been obtained from the analysis of the documents related to the  ship sail is use to make the analysis using 5 whys method to looking for the root cause. According to the analysis that has been done, the technical cause of the leak vessel caused by system shafting system is reconditioned flange bolts that have been damaged and the addition of flax on the bearing shaft has to cope without straightening axle deflection itself. While the Autodesk Inventor 3D modeling software obtained bolt broken because the act force is 10782.31 N with the shear stress 2.230 MPa, while the maximum force in the normal load is 9.434,531.N with shear force 1,951 Mpa. Then from the cause from non-technical factors are equipment / spare part to overcome the failure of shafting system is very less, the workplace is dirty and uncomfortable and happened miss communication between the crew in the engine room to overcome the leakage.