Claim Missing Document
Check
Articles

Found 5 Documents
Search

Peak Metamorphic Conditions of Garnet Amphibolite from Luk Ulo Complex, Central Java, Indonesia: Implications for Medium-Pressure/High-Temperature Metamorphism in the Central Indonesian Accretionary Collision Complex Setiawan, Nugroho Imam; Osanai, Yasuhito; Nakano, Nobuhiko; Adachi, Tatsuro; Hendratno, Agus; Sasongko, Wahyu; Ansori, Chusni
Indonesian Journal on Geoscience Vol 7, No 3 (2020)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (25873.67 KB) | DOI: 10.17014/ijog.7.3.225-239

Abstract

DOI:10.17014/ijog.7.3.225-239Garnet amphibolites, which suggest medium-pressure/high-temperature (MP/HT), are widely recognized in Luk Ulo Complex, Central Java. Their occurrences associated with high-pressure/low-temperature (HP/LT; eclogite, blueschist) metamorphic rocks in the Luk Ulo Complex will provide important constraint on the geodynamic model of Central Indonesian Accretionary Collision Complex (CIACC). This study aimed to estimates P-T metamorphic condition of garnet amphibolite from Luk Ulo Complex by using mineral parageneses, thermodynamic data, and NCKFMASHO pseudosection. Prograde stage assemblages represented by inclusions in the garnet, which are garnet core, zoisite, titanite, apatite, and quartz. Mineral coexistences at the peak P-T condition are garnet rim, magnesio-hornblende, zoisite, titanite, quartz, albite, and phengite. The retrograde stage represented by secondary minerals fill the crack in the garnet and other minerals, which are chlorite and quartz. P-T metamorphic condition of garnet amphibolite can only be interpreted from the peak metamorphic stage. The temperature of the garnet amphibolite is estimated using the garnet-amphibole and garnet-phengite geothermometers. Meanwhile, the pressure condition is estimated from phengite geobarometer. The results were compared to the stability and compositions of the phases in NCKFMASHO pseudosection in order to constrain the peak P-T metamorphic conditions. It is concluded that the peak P-T metamorphic condition for garnet amphibolite is 0.9 - 1.4 GPa and 558 - 606 ºC. The estimated peak P-T metamorphic temperature is higher compared to the previously published gradient geothermal of eclogite and tourmaline-eclogite in the Luk Ulo Complex. The MP/HT (amphibolite) and HP/LT (blueschist and eclogite) metamorphic rocks could have similar metamorphic ages if both footwall and hanging wall had initially very high thermal gradients and the rate of subduction was very slow (10 km/Ma or less).
Peak Metamorphic Conditions of Garnet Amphibolite from Luk Ulo Complex, Central Java, Indonesia: Implications for Medium-Pressure/High-Temperature Metamorphism in the Central Indonesian Accretionary Collision Complex Setiawan, Nugroho Imam; Osanai, Yasuhito; Nakano, Nobuhiko; Adachi, Tatsuro; Hendratno, Agus; Sasongko, Wahyu; Ansori, Chusni
Indonesian Journal on Geoscience Vol 7, No 3 (2020)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.7.3.225-239

Abstract

DOI:10.17014/ijog.7.3.225-239Garnet amphibolites, which suggest medium-pressure/high-temperature (MP/HT), are widely recognized in Luk Ulo Complex, Central Java. Their occurrences associated with high-pressure/low-temperature (HP/LT; eclogite, blueschist) metamorphic rocks in the Luk Ulo Complex will provide important constraint on the geodynamic model of Central Indonesian Accretionary Collision Complex (CIACC). This study aimed to estimates P-T metamorphic condition of garnet amphibolite from Luk Ulo Complex by using mineral parageneses, thermodynamic data, and NCKFMASHO pseudosection. Prograde stage assemblages represented by inclusions in the garnet, which are garnet core, zoisite, titanite, apatite, and quartz. Mineral coexistences at the peak P-T condition are garnet rim, magnesio-hornblende, zoisite, titanite, quartz, albite, and phengite. The retrograde stage represented by secondary minerals fill the crack in the garnet and other minerals, which are chlorite and quartz. P-T metamorphic condition of garnet amphibolite can only be interpreted from the peak metamorphic stage. The temperature of the garnet amphibolite is estimated using the garnet-amphibole and garnet-phengite geothermometers. Meanwhile, the pressure condition is estimated from phengite geobarometer. The results were compared to the stability and compositions of the phases in NCKFMASHO pseudosection in order to constrain the peak P-T metamorphic conditions. It is concluded that the peak P-T metamorphic condition for garnet amphibolite is 0.9 - 1.4 GPa and 558 - 606 ºC. The estimated peak P-T metamorphic temperature is higher compared to the previously published gradient geothermal of eclogite and tourmaline-eclogite in the Luk Ulo Complex. The MP/HT (amphibolite) and HP/LT (blueschist and eclogite) metamorphic rocks could have similar metamorphic ages if both footwall and hanging wall had initially very high thermal gradients and the rate of subduction was very slow (10 km/Ma or less).
Peak Metamorphic Conditions of Garnet Amphibolite from Luk Ulo Complex, Central Java, Indonesia: Implications for Medium-Pressure/High-Temperature Metamorphism in the Central Indonesian Accretionary Collision Complex Nugroho Imam Setiawan; Yasuhito Osanai; Nobuhiko Nakano; Tatsuro Adachi; Agus Hendratno; Wahyu Sasongko; Chusni Ansori
Indonesian Journal on Geoscience Vol 7, No 3 (2020)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.7.3.225-239

Abstract

DOI:10.17014/ijog.7.3.225-239Garnet amphibolites, which suggest medium-pressure/high-temperature (MP/HT), are widely recognized in Luk Ulo Complex, Central Java. Their occurrences associated with high-pressure/low-temperature (HP/LT; eclogite, blueschist) metamorphic rocks in the Luk Ulo Complex will provide important constraint on the geodynamic model of Central Indonesian Accretionary Collision Complex (CIACC). This study aimed to estimates P-T metamorphic condition of garnet amphibolite from Luk Ulo Complex by using mineral parageneses, thermodynamic data, and NCKFMASHO pseudosection. Prograde stage assemblages represented by inclusions in the garnet, which are garnet core, zoisite, titanite, apatite, and quartz. Mineral coexistences at the peak P-T condition are garnet rim, magnesio-hornblende, zoisite, titanite, quartz, albite, and phengite. The retrograde stage represented by secondary minerals fill the crack in the garnet and other minerals, which are chlorite and quartz. P-T metamorphic condition of garnet amphibolite can only be interpreted from the peak metamorphic stage. The temperature of the garnet amphibolite is estimated using the garnet-amphibole and garnet-phengite geothermometers. Meanwhile, the pressure condition is estimated from phengite geobarometer. The results were compared to the stability and compositions of the phases in NCKFMASHO pseudosection in order to constrain the peak P-T metamorphic conditions. It is concluded that the peak P-T metamorphic condition for garnet amphibolite is 0.9 - 1.4 GPa and 558 - 606 ºC. The estimated peak P-T metamorphic temperature is higher compared to the previously published gradient geothermal of eclogite and tourmaline-eclogite in the Luk Ulo Complex. The MP/HT (amphibolite) and HP/LT (blueschist and eclogite) metamorphic rocks could have similar metamorphic ages if both footwall and hanging wall had initially very high thermal gradients and the rate of subduction was very slow (10 km/Ma or less).
KAJIAN HUBUNGAN DIAGENESIS DAN SIKUEN STRATIGRAFI FORMASI NANGGULAN BERDASARKAN ANALISIS PETROGRAFI BATUPASIR Wahyu Sasongko
KURVATEK Vol 3 No 1 (2018): April 2018
Publisher : Institut Teknologi Nasional Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33579/krvtk.v3i1.580

Abstract

Proses diagenesis yang terjadi pada batuan memiliki hubungan yang erat dengan konsep sikuen stratigrafi. Proses diagenesis awal (eogenesis) yang terbentuk pada suatu batuan dipengaruhi oleh posisi stratigrafi batuan tersebut dalam tataan sikuen stratigrafi. Eogenesis tersebut dapat diteliti dengan menggunakan data petrografi batupasir mengenai proses diagenesis yang terdapat pada batuan, dan juga dengan melihat posisi batuan dalam tataan sikuen stratigrafi. Formasi Nanggulan yang tersingkap di Kulon Progo, Yogyakarta merupakan salah satu formasi yang dengan beberapa interval litologi batupasir. Analisis mengenai sikuen stratigrafi Formasi Nanggulan telah diteliti sebelumnya dengan menggunakan analisis batuan inti. Studi lebih lanjut mengenai Formasi Nanggulan bertujuan untuk mengetahui karakteristik batupasir dan proses diagenesisnya, serta mencari hubungan antara proses diagenesis dan sikuen stratigrafi. Penelitian dilakukan dengan menggunakan analisis petrografi dari data batuan inti dan singkapan permukaan dengan tujuan untuk mengetahui hubungan antara diagenesis dan sikuen stratigrafi pada batupasir Formasi Nanggulan.Berdasarkan analisis petrografi terhadap diagenesis pada Formasi Nanggulan, dapat dikonfirmasi bahwa Formasi Nanggulan terdiri dari 3 system tract yaitu lowstand system tract (LST), transgressive system tract (TST), dan highstand system tract (HST). Tahapan proses diagenesis yaitu eogenesis, mesogenesis dan telogenesis telah mempengaruhi Formasi Nanggulan. Karakteristik diagenesis pada Formasi Nanggulan bervariasi sesuai dengan system tract dan marker batas sikuen pada tataan sikuen stratigrafi. Berdasaran penelitian ini dapat diketahui bahwa sikuen stratigrafi Formasi Nanggulan dapat dikonfirmasi dengan data diagenesis.
OPTIMASI VALUASI EKONOMI ENDAPAN NIKEL LATERIT MEMPERHITUNGKAN BIAYA LINGKUNGAN: OPTIMIZATION OF THE ECONOMIC VALUATION OF LATERITIC NICKEL DEPOSITS CONSIDERING ENVIRONMENTAL COSTS Wahyu Sasongko; Rheva Dwiky Adhitya
Buletin Sumber Daya Geologi Vol. 17 No. 1 (2022): Buletin Sumber Daya Geologi
Publisher : Pusat Sumber Daya Mineral Batubara dan Panas Bumi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47599/bsdg.v17i1.346

Abstract

Optimization of mineral economic valuation aims to determine the maximum net present value of a project over the life of mine. The economic valuation optimization model in this study is the development of the Lane (1988) and Sasongko (2013) model by considering environmental costs and referring to the cash flow framework. The research methods are include the following: (1) resource modeling and estimation, (2) mineral economic valuation modeling, (3) solution model determination, and (4) mineral economic valuation. Resource modeling in the block model with a size of 25 m x 25 m x 1 m. The block content estimation uses the inverse distance weighting (IDW) interpolation method. Economic valuation optimization modeling in this research is modeling in terms of cash flow by considering environmental costs and government policies such as taxes, royalties, and depreciation. Optimizing cut-off grade is an attempt to determine the optimum grade that will produce the maximum profit or net present value (NPV). The solution model in this case includes cut-off grade optimization for profit optimization and NPV optimization. The model solution to determine the optimum cut-off grade depends on constrains of the mining, concentrating and refining. Determination of the cut-off grade optimization model solution using analytical methods. In the case study, the estimated amount is US$4,253,566 tons of nickel ore. At a constant mining rate at an optimum level of 0.95%, the mine life is 4.85 years with an NPV of US$811,248,447. Optimization of economic valuation with NPV indicator, the life of mine of 4.44 years and maximum NPV of US$841,596,460. The cut-off grade value varies in each mining year: the 1st year with a grade of 0.99%; 2nd year level 0.99; 3rd year level 0.98%; 4th year level 0.97%; 5th year the rate is 0.95%. NPV economic valuation optimization has a greater value and shorter time, compared to profit optimization (profit).