Claim Missing Document

Found 2 Documents

Dinamika Pertukaran Partikel Pada Interaksi Nukleon-Nukleon Dalam Potensial Lokal R Yosi Aprian Sari; Supardi S; Agung BSU; Arief Hermanto
Publisher : Department of Physics, Sebelas Maret University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.13057/ijap.v2i02.1282


The interaction of two nucleons in the form of protons and neutrons as a bound system in the local potential, known as the deuteron, has been investigated. Two-nucleon interaction potential field through the core will produce a nuclear force where the force between nucleons is generated by the exchange of mesons. One of the members of the group of meson particles is pion. Pion can be chargedπ + ,π -or neutral,π 0. Interaction potential form of the simplest is the exchange of one pion potential (OPEP), V OPEP , which has a radially independent of Yukawa potential. In this study, the first step taken is to perform discretization of the OPEP potential expression coupled with the equation of the boundary conditions due to the influence of interaction distances. The next step is to implement a programming technique to obtain the value associated with the potential influence of OPEP in the deuteron, the magnitudes of the static deuteron, such as a pion distance exchange, and mass estimates pion involved in this interaction.
Surface Wave Topography using The 4 Point FDM Simulator Adi Jufriansah; Yudhiakto Pramudya; Arief Hermanto; Azmi Khusnani
Science and Technology Indonesia Vol. 5 No. 4 (2020): October
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3343.798 KB) | DOI: 10.26554/sti.2020.5.4.117-120


The 2D topography proffers a new challenge of modeling surface waves with a 4-point finite difference (FDM) model. Topographic representation of wave propagation over a certain area will result in loss of accuracy of the numerical model. Then from this the need for appropriate modifications to reduce calculation errors. The existing approach requires value representation as an internal extrapolation solution for temporary exterior conditions. It is finally by providing boundary conditions and initial conditions in the system. However, the scheme sometimes becomes unstable for very irregular topography. 1D extrapolation along the parallel path is known to produce a simple and efficient scheme. During extrapolation, the stability of the 1D hyperbolic Schema improved by disregarding the nearest interior boundary point, which is less than half the lattice distance. Given the limited difference so that the stencils from both sides of the central evaluation point can be used as a 2D form modification if there are not enough inside points. So that in propagation space, waves that move and change according to changes in time. It will be following the wave nature of one source that travels in the x and y fields whose amplitude will change exponentially against propagation time. It is by the nature of surface wave motion.