Claim Missing Document
Check
Articles

Found 3 Documents
Search

Circular economy, energy transition, and role of hydrogen Ibham Veza; Muhammad Idris; Islam Md Rizwanul Fattah
Mechanical Engineering for Society and Industry Vol 2 No 2 (2022)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.7134

Abstract

Circularity is not a new concept. Activities such as reuse or recycling have been around for centuries. Today, an urgent solution to tackle the increasing harmful emissions resulting in severe climate changes is being proposed and investigated. This is because a link between industry and the environment is critically important for business. A more sustainable socio-technical system is therefore urgently needed. There has been a rapid growth of academic articles on the circular economy. The circular economy concept has been considered a solution to many of today’s challenges, including resource scarcity and waste generation.
A Review of automotive green technology: Potential of butanol as biofuel in gasoline engine Sri Mumpuni Ngesti Rahayu; April Lia Hananto; Safarudin Gazali Herawan; Muhammad Zacky Asy'ari; Ahmed Sule; Muhammad Idris; Dhany Hermansyah; Shuaibu Alani Balogun; Esam Abu Baker Ali
Mechanical Engineering for Society and Industry Vol 2 No 2 (2022)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.7155

Abstract

In comparison to ethanol biofuel, butanol is considerably less corrosive, permitting the utilization of existing infrastructures used to ship gasoline or diesel for its distribution. Less corrosive also means that butanol can be utilized with no engine alteration. If butanol is mixed with water, it is less likely to split from the main fuel, thus facilitating the storage and distribution of blended fuels. Butanol also comprises a comparable energy content to petrol fuel, with 25% more energy density/liter as opposed to ethanol. All these excellent qualities have led to higher engine performance, enabling the vehicles to achieve higher mileage using butanol with no significant issue. Several challenges and future research directions are discussed and in the last section of this review article, we emphasize the importance of an optical engine to diagnose engine combustion in more detail. The consequence of using butanol on spark ignition engine on cold start and knock phenomena are also worth investigating. Results on the spray, the pressure inside the cylinder, rate of heat release, and detonation are thus required.
Strategies to achieve controlled auto-ignition (CAI) combustion: A review Ibham Veza; Indra C. Setiawan; La Ode M. Firman; Handi Handi; Ayu Amanah; Mega T. Kurnia; Permana A. Paristiawan; Muhammad Idris; Ahmed Sule; Anthony C. Opia
Mechanical Engineering for Society and Industry Vol 3 No 1 (2023)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.7568

Abstract

Conventional gasoline engines suffer from low performance and NOx emissions. Controlled auto-ignition (CAI), sometimes referred to as homogeneous charge compression ignition (HCCI), is a promising concept to solve such problems. CAI has the potential to improve spark ignition (SI) engine fuel economy while at the same time solving the trade-off of NOx-soot emissions found in compression ignition (CI) engines. The CAI engine can reach a fuel economy comparable to that of a conventional diesel engine with ultra-low NOx and negligible soot emissions. However, controlling auto-ignition remains the biggest difficulty that hinders the implementation of CAI as a commercial engine. Research towards a cleaner and more efficient engine is driven by the progressively stringent emission regulation imposed worldwide. Therefore, the CAI was developed to meet the emissions target while maintaining engine performance. CAI works on the principle of lean mixture and auto-ignition. To obtain CAI combustion, the temperatures in the cylinder must be sufficient to initiate auto-ignition. Without the use of a spark plug or injector, the CAI suffers from a direct control mechanism to start the combustion. The most practical approach to controlling the initiation of auto-ignition in CAI is diluting the intake charge by either trapping the residual gas or recirculating the exhaust gas. Both approaches enable the engine to achieve CAI combustion without requiring significant modifications to control the onset of CAI combustion phase.