Claim Missing Document
Check
Articles

Found 8 Documents
Search

POTENSI ENERGI PADA SISTEM REFRIGERASI SIKLUS TUNGGAL DAN GANDA (CASCADE) SEBAGAI PEMANAS UNTUK PROSES PENGERINGAN BEKU VAKUM Muhamad Yulianto; M. Idrus Alhamid; Nasruddin Dan; Engkos A Kosasih
Teknotan: Jurnal Industri Teknologi Pertanian Vol 7, No 3 (2013)
Publisher : Fakultas Teknologi Industri Pertanian

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Potensi energi sistem refrigerasi siklus tunggal dan rangkap pada mesin pengeringan beku perlu diukur untuk menentukan manfaat panas buang kondensernya sebagai pemanas mesin pengeringan beku.  Sistem refrigerasi tunggal terdiri dari kompresor, condenser, katup ekspansi dan Evaporator, oil separator, liquid receiver, dan accumulator Sedangkan sistem refrigerasi ganda terdiri bagian High stage dan Low Stage yang dihubungkan melalui sebuah PHE (Plat Heat Exchanger). Hasil pengukuran menunjukan bahwa sistem refrigerasi tunggal dapat mencapai temperatur pembekuan sebesar -35 sampai -40 °C pada sisi evaporator dan mencapai temperatur masuk kondenser 70 °C dan keluar kondenser 30 °C dengan refrigerant HCR 22. Sedangkan pada sistem refrigerasi siklus ganda (Cascade) dengan temperatur pembekuan sebesar -35 sampai -37oC dan mencapai temperatur masuk kondenser LS 110 °C dan keluar kondenser 25 °C dengan refrigeran 20 % CO2 dan 80 % HCR 22. Fakta ini menunjukan bahwa panas buang kondenser dapat digunakan sebagai pemanas untuk mempercepat laju pengeringan dan mengurangi konsumsi energi pada proses pengeringan beku vakum Kata kunci: panas buang kondenser, mesin pengeringan beku vakum, refrigerasi siklus                       tunggal dan ganda  
Desain Dan Pengujian Kolektor Surya CPC Berselubung Kaca Sebagai Media Evaporasi Sistem ORC Dwi Yuliaji; Yogi Sirod Gaoz; Tachli Supriyadi; Roy Waluyo; Mulya Juarsa; Muhamad Yulianto
Jurnal Energi Dan Manufaktur Vol 9 No 1 (2016): April 2016
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (627.876 KB)

Abstract

Abstrak:Bagian dari kegiatan penelitian pembangkit Organic Rankine Cycle (ORC) dengan sumber kalor dari radiasi matahariadalah kolektor surya. Tujuan penulisan ini adalah menjelaskan disain kolektor surya dengan menggabungkan dua tipe,yaitu reflektor plat datar dengan concentrated parabolic collector (CPC).Bagian terpenting dari kolektor surya adalahselubung kaca pada receiver yang bertujuan sebagai media evaporasi pada system Organic Rankine Cycle(ORC).Geometri kolektor termal solar memiliki dimensi dengan panjang 1 m, tinggi 0,9 m, lebar alas 0,028 m, lebartutup 1,16 m. Concentrator merupakan bagian penangkap radiasi matahari dengan model semi silinder tipe CPCdengan bahan AISI 1015 yang dilapisi alumunium foil. Receiver menggunakan pipa tembaga 12,7mm, tebal 20mm,panjang total 3,46 m. Pipa tembaga dibungkus oleh pipa kaca diameter 51,4 mm, tebal 20mm. Dinding reflectormenggunakan AISI 201. Isolator terdiri dua lapisan, lapisan dalam menggunakan bahan polistirena foam tebal 20mmdan lapisan luar menggunakan Harmaflek tebal 20mm. Temperatur tertinggi pipa reciever sebelum dialiri fluida 104,4oCpada intensitas cahaya matahari 57,8 flux.Kata kunci: Kolektor surya, reflektor plat datar, concentrated parabolic collector (CPC), Organic Rankine Cycle (ORC)Abstract:A Part of the research activity for development of Organic Rankine Cycle (ORC) plant with a heat source from solarradiation aresolar collector. The purpose in this paper is to describe design of solar collector with combining two type ofreflector, flat type reflector and concentrated parabolic collector (CPC). Most important part of the solar collector is theglass layer on the receiver which intended as media evaporation in the ORC system. The geometries of solar collectorhave dimensions of length 1 m, height 0.9 m, width of pedestal 0,028 m, width 1.16 m for cap. Then, concentrator is thepart solar radiation catcher using semi-cylinder models type CPC with material AISI 1015 was coated by aluminum foil.Receiver uses a 12,7 mm copper pipe, 20mm thick, total length of 3.46 m. Copper pipe wrapped by a glass pipe withdiameter of 51,4mmand thickness 20mm. Wall reflector using AISI 201. Insulation consists of two layers with innerlayers using polystyrene foam material with a size of 20 mm thick and the outer layer usingHarmaflek with the size of20mm thick. Highest temperature on reciever pipe without fluid is 104,4oC at solar flux 57,8 flux.Keywords : solar collector, flat plate reflector, concentrated parabolic collector(CPC), Organic Rankine Cycle (ORC)
Investigasi Eksperimental Pengaruh Laju Aliran Massa Air Pada Solar Termal Tipe CPC Edi Marzuki; Mokhamad Nur Khasan; Yogi Sirodz Gaos; Mulya Juarsa; Muhamad Yulianto
Jurnal Energi Dan Manufaktur Vol 9 No 1 (2016): April 2016
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (389.507 KB)

Abstract

Abstrak:Optimasi penggunaan energi matahari masih perlu ditingkatkan, salah satunya dengan menggunakan kolektor surya.Panas yang diterima digunakan sebagai sumber kalor untuk sistem pembangkit Organic Rankine Cycle (ORC).Kegiatan penelitian diawali dengan desain, konstruksi, dan pengujian kolektor termal solar, tipe concentrated paraboliccollector (CPC). Banyak paramater yang mempengaruhi capaian temperatur pada CPC, salah satunya laju aliran.Tujuan penulisan makalah adalah untuk menentukan temperatur optimal CPC berdasarkan perubahan laju aliransecara eksperimen. Investigasi secara eksperimental dilakukan untuk dapat memanfaatkan potensi radiasi matahariyang bisa mencapai 5,2 kWh/m2 sebagai media evaporasi pada sistem pembangkit ORC yang merupakan langkahawal penelitian. Kolektor surya tipe CPC yang digunakan memiliki geometri panjang 1 m, tinggi 0,9 m, lebar alas 0,028m, lebar tutup 1,16 m. Solar collector dilapisi dua bahan yang berbeda yaitu polistirena foam dengan tebal 0,02 m danarmaflex dengan tebal 0,02 m. Pengambilan data dilakukan dengan melakukan pengukuran besaran radiasi dantemperatur pada dinding kolektor, temperatur masuk air, dan temperatur keluar air. Pengambilan data radiasi mataharimenggunakan lux meter dan temperatur menggunakan thermocouple tipe K. Hasil dari penelitian ini adalah temperaturcapaian maksimum terjadi ketika laju aliran massa air paling rendah.Kata kunci: Kolektor surya, CPC, temperatur, laju aliran, ORCAbstract:Optimization of solar energy utilization is still needs to be improved, either by using solar collectors. Absorbed heat willuse as a heat source for an Organic Rankine Cycle (ORC) plant system. Research activities begins with the design,construction, and testing of solar thermal collectors, the type of concentrated parabolic collector (CPC). Manyparameters that affect the achievement of the temperature on the CPC, one of which flow rate. The purpose in thispaper is to determine the optimal temperature CPC based on changes in flow rate experimentally. Experimentalinvestigation has been done to exploit the potential of solar radiation that could reach 5.2 kWh/m2 as evaporation mediain ORC plant system as the first step of the study. The CPC solar collectors type has geometries with length 1 m, height0.9 m, width of pedestal 0,028 m, and width 1.16 m cap. Solar collector coated with two different materials, namelypolystyrene foam with a thickness of 0.02 m and armaflex with a thickness 0.02 m. The data collection was performedby measuring the amount of radiation and temperature on the collector wall, the water inlet temperature, and wateroutlet temperature. Measurement for solar radiation was conducted using a lux meter, and temperature using athermocouple type K. The results of this study shows that the highest of temperature achievement is occurs for thelowest mass flow rate.Keywords: Solar collector, CPC, temperature, flow rate, ORC
Desain Dan Pengujian Kolektor Surya CPC Berselubung Kaca Sebagai Media Evaporasi Sistem ORC Dwi Yuliaji; Yogi Sirod Gaoz; Tachli Supriyadi; Roy Waluyo; Mulya Juarsa; Muhamad Yulianto
Jurnal Energi Dan Manufaktur Vol 9 No 1 (2016): April 2016
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (627.876 KB)

Abstract

Abstrak:Bagian dari kegiatan penelitian pembangkit Organic Rankine Cycle (ORC) dengan sumber kalor dari radiasi matahariadalah kolektor surya. Tujuan penulisan ini adalah menjelaskan disain kolektor surya dengan menggabungkan dua tipe,yaitu reflektor plat datar dengan concentrated parabolic collector (CPC).Bagian terpenting dari kolektor surya adalahselubung kaca pada receiver yang bertujuan sebagai media evaporasi pada system Organic Rankine Cycle(ORC).Geometri kolektor termal solar memiliki dimensi dengan panjang 1 m, tinggi 0,9 m, lebar alas 0,028 m, lebartutup 1,16 m. Concentrator merupakan bagian penangkap radiasi matahari dengan model semi silinder tipe CPCdengan bahan AISI 1015 yang dilapisi alumunium foil. Receiver menggunakan pipa tembaga 12,7mm, tebal 20mm,panjang total 3,46 m. Pipa tembaga dibungkus oleh pipa kaca diameter 51,4 mm, tebal 20mm. Dinding reflectormenggunakan AISI 201. Isolator terdiri dua lapisan, lapisan dalam menggunakan bahan polistirena foam tebal 20mmdan lapisan luar menggunakan Harmaflek tebal 20mm. Temperatur tertinggi pipa reciever sebelum dialiri fluida 104,4oCpada intensitas cahaya matahari 57,8 flux.Kata kunci: Kolektor surya, reflektor plat datar, concentrated parabolic collector (CPC), Organic Rankine Cycle (ORC)Abstract:A Part of the research activity for development of Organic Rankine Cycle (ORC) plant with a heat source from solarradiation aresolar collector. The purpose in this paper is to describe design of solar collector with combining two type ofreflector, flat type reflector and concentrated parabolic collector (CPC). Most important part of the solar collector is theglass layer on the receiver which intended as media evaporation in the ORC system. The geometries of solar collectorhave dimensions of length 1 m, height 0.9 m, width of pedestal 0,028 m, width 1.16 m for cap. Then, concentrator is thepart solar radiation catcher using semi-cylinder models type CPC with material AISI 1015 was coated by aluminum foil.Receiver uses a 12,7 mm copper pipe, 20mm thick, total length of 3.46 m. Copper pipe wrapped by a glass pipe withdiameter of 51,4mmand thickness 20mm. Wall reflector using AISI 201. Insulation consists of two layers with innerlayers using polystyrene foam material with a size of 20 mm thick and the outer layer usingHarmaflek with the size of20mm thick. Highest temperature on reciever pipe without fluid is 104,4oC at solar flux 57,8 flux.Keywords : solar collector, flat plate reflector, concentrated parabolic collector(CPC), Organic Rankine Cycle (ORC)
Potensi Penggunaan Bambu sebagai Tabung Resonator Thermoacoustics Refrigeration Edy Hartulistiyoso; Muhamad Yulianto; Irawan Senatosa
Jurnal Keteknikan Pertanian Vol. 1 No. 1 (2013): Jurnal Keteknikan Pertanian
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19028/jtep.01.1.%p

Abstract

AbstractThermoacoustics refrigeration is considered as one of cooling method, which recently developed. This method can be applied for cooling of foods in particular vegetables. The important components in thermoacoustics refrigeration are: resonator tube, Stack, acoustics driver and working fluid. The advantages of thermoacousic refrigeration include the use of relatively simple components, consequent energy saving, and most importantly thing is environmentally friendly. Recent researches has highlighted the necessity to develop resonator tube and stack concerning shape, design, size and basic material which is used to produce resonator tube and stack. This paper comprehensively reviews the current state of technologyto develop shape, design, size, and basic material in the development of thermoacoustics refrigeration. It is concluded that the use of bamboo as basic material can be applied with continuing research of its application may lead to the use of thermoacoustic refrigeration for food and vegetables.Keywords: themoacoustics refrigeration, bamboo, resonator tube, stack, food and vegetablesAbstrakThermoacoustic refrigeration merupakan salah satu metode pendinginan yang saat ini banyak dikembangkan. Metode ini dapat diaplikasikan untuk mendinginkan makanan dan sayur-sayuran. Beberapa komponen komponen penting dalam thermoacoustic refrigeration diantaranya adalah : tabung resonator, stack, pembangkit akustik dan fluida kerja. Keunggulan penggunaan metode thermoacoustic refrigeration sebagai metode pendinginan adalah : penggunaan komponen yang lebih sedikit, penghematan energi, dan yang paling penting adalah ramah lingkungan. Penelitian-penelitian terbaru banyak memfokuskan pada pengembangan tabung resonator dan stack terutama pada hal-hal yang berkaitan dengan bentuk, design, ukuran dan material dasar yang digunakan pada pembuatan tabung resonator dan stack. Artikel ini secara komprehensif meninjau kondisi perkembangan teknologi yang berkaitan dengan bentuk, design, ukuran dan material dasar pada pengembangan thermoacoustic refrigeration. Artikel ini mempunyai kesimpulan bahwa penggunaan bambu sebagai tabung resonansi dapat diaplikasikan dengan penelitian yang berkelanjutan untuk dapat diaplikasikan juga sebagai thermoacoustic refrigeration untuk makanan dan sayur-sayuran.Kata kunci: thermoacoustic refrigeration, bambu, tabung resonansi, stack, makanan dan sayur-sayuranDiterima: 17 Juni 2013; Disetujui: 26 September 2013
PERFORMANCE ANALYSIS OF WORKING FLUIDS ON ORGANIC RANKIE CYCLE (ORC) MODEL WITH BIOMASS ENERGY AS A HEAT SOURCES Lilis Sucahyo; Muhamad Yulianto; Edy Hartulistiyoso; Irham Faza
Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering) Vol 8, No 3 (2019): September
Publisher : The University of Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1410.827 KB) | DOI: 10.23960/jtep-l.v8i3.175-186

Abstract

Organic Rankine Cycle (ORC) is an electricity power technology particularly suitable for medium-low temperature heat sources and/or for small available termal power. This paper presents the simulation and performance analysis of working fluids R-134a, R-414B, R-404A and R-407C on ORC with biomass energy as a heat source. Simulation of the ORC system using Cycle Tempo software. The property of working fluids is obtained by using Reference Fluid Properties (Refprop). The best result performance of ORC was shown by working fluid R-404A with thermal efficiency 7.54 % and electric power output ranges between 0.075 kW. This condition operated on turbine inlet temperature at 60 oC, difference turbine working temperature of 15 oC, condensing temperature 25 oC and water boiler mass flow rate 3 lpm.
Pemilihan Fluida Kerja pada Pengembangan Organic Rankine Cycle Yogi Sirodz Gaos; Mulya Juarsa; Edi Marzuki; Muhamad Yulianto
AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin Vol 1, No 1 (2015)
Publisher : Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (530.311 KB) | DOI: 10.32832/ame.v1i1.106

Abstract

Characteristics of Vacuum Freeze Drying with Utilization of Internal Cooling and Condenser Waste Heat for Sublimation Alhamid, Muhammad Idrus; Yusuf, Nasruddin; Mahlia, Indra Teuku Meurah; Kosasih, Engkos Ahmad; Yulianto, Muhamad; Ricardi, Rio
Makara Journal of Technology Vol. 17, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Vacuum freeze drying is an excellent drying method, but it is very energy-intensive because a relatively long drying time is required. This research investigates the utilization of condenser waste heat for sublimation as a way of accelerating the drying rate. In addition, it also investigates the effect of internal cooling combined with vacuum cooling in the pressure reduction process. Jelly fish tentacles were used as the specimen, with different configurations for condenser heat waste and internal cooling valve opening. The results show that heating with condenser heat waste can accelerate the drying rate up to 0.0035 kg/m2.s. In addition, pre-freezing by internal cooling prevents evaporation until the mass of the specimen is 0.47 g and promotes transition of the specimen into the solid phase.