Fitrian Imaduddin
Universitas Sebelas Maret

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Comparing the linear and logarithm normalized extreme learning machine in flow curve modeling of magnetorheological fluid Irfan Bahiuddin; Abdul Y Abd Fatah; Saiful A Mazlan; Mohd I Shapiai; Fitrian Imaduddin; Ubaidillah Ubaidillah; Dewi Utami; Mohd N Muhtazaruddin
Indonesian Journal of Electrical Engineering and Computer Science Vol 13, No 3: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v13.i3.pp1065-1072

Abstract

The extreme learning machine (ELM) plays an important role to predict magnetorheological (MR) fluid behavior and to reduce the computational fluid dynamics (CFD) calculation cost while simulating the MR fluid flow of an MR actuator. This paper presents a logarithm normalized method to enhance the prediction of ELM of the flow curve representing the MR fluid rheological properties. MRC C1L was used to test the performance of the proposed method, and different activation functions of ELMs were chosen to be the neural networks setting. The Normalized Root Mean Square Error (NRMSE) was selected as the indicator of the ELM prediction accuracy. NRMSE of the proposed method is found to improve the model accuracy up to 77.10 % for the prediction or testing case while comparing with the linear normalized ELM
Preliminary experimental evaluation of a novel loudspeaker featuring magnetorheological fluid surround absorber Endra Dwi Purnomo; Ubaidillah Ubaidillah; Fitrian Imaduddin; Iwan Yahya; Saiful Amri Mazlan
Indonesian Journal of Electrical Engineering and Computer Science Vol 17, No 2: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v17.i2.pp922-928

Abstract

A novel design of magnetorheological fluids (MRF) based surround device in a loudspeaker system was studied in this article. The main objective of this research is to design a new surround device of the loudspeaker that can be easily controlled its damping. Therefore, it was predicted that the audio pressure level on the loudspeaker could be easily manipulated at a different sound source by applying a certain magnetic field. This function could not be reached using one conventional speaker system. Firstly, a set of an electromagnetic device containing MRF was designed to replace the conventional rubber surround. The magnetic circuit was then evaluated using the finite element method magnetics to study the flux distribution in the MRF area. The current was varied from 0.25 to 0.75 A by an interval of 0.25 A. The magnetic flux resulted from the simulation was then logged and used as the based value for predicting the change of shear yield stress. The base properties of the shear yield stress of the MRF against the magnetic flux was obtained from previous experimental result. Therefore, it was hopefully the prediction could be closed to the real system. Based on the simulation result, the shear yield stress varied from 43 to 49 Mpa or about 15 % increment. A simple experimental work was carried out. By applying particular direct current into the coil, the sound quality generated by the loudspeaker shows different values. Based on the preliminary experiment, the level of decibel decreased about 3 dB as the application of magnetic fields. The idea has been proven in this preliminary experimental evaluation.
PERMODELAN INVERSI PEREDAM MAGNET-REOLOGI BERBASIS JARINGAN SARAF TIRUAN UNTUK SISTEM KENDALI Rafly Asprilla Alwi; Irfan Bahiuddin; Ryandhi Rofifu Chazim; Agustinus Winarno; Fitrian Imaduddin
Jurnal Rekayasa Mesin Vol. 13 No. 2 (2022)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v13i2.962

Abstract

The application of artificial neural network (ANN) models in magnet-rheological damper modeling is of great interest in recently challenges. Therefore, this study aims to propose a solution to overcome this problem by conducting inverse modeling using an artificial neural network. This inverse model is applied to a meandering magnet-rheological valve damper to predict the current to produce the appropriate damping force. The simulation scheme is selected with current as output and damping force, velocity, and displacement as input. The best model is formulated by varying the architecture of the artificial neural network. The best artificial neural network architecture is obtained after doing these variations. The data is divided into 80% training data, 10% validation data, and 10% test data. The activation function used is a logsig function using three hidden layers with the number of neurons in each layer [30-20-30]. The algorithm used in the chosen architecture is Levenberg-Marquardt. The regression value of 0.991 and the MSE value of 0.001 were obtained from the modeling results. The required damping force is ensured that it can be predicted well using the selected artificial neural network. The test proves that the results of the regression constant are 0.999 and the MSE value is 0.0005 when the current output value is inverted to the damper artificial neural network.