Claim Missing Document
Check
Articles

Found 2 Documents
Search

Seebeck Coefficient of SOI Layer Induced by Phonon Transport Salleh, Faiz; Oda, Takuro; Suzuki, Yuhei; Kamakura, Yoshinari; Ikeda, Hiroya
Makara Journal of Technology Vol. 19, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Seebeck coefficient of a patterned Si wire on P-doped SOI (Si-on-insulator) layer with a carrier concentration of 1018 cm-3 was measured near room temperature. The Seebeck coefficient is found to be smaller than that in the SOI layer and to be closer to the calculated Seebeck coefficient including the electronic contribution. The decrease in the Seebeck coefficient of Si wire is likely to occur due to the elimination of the contribution of phonon drag part. From the theoretical calculation of scattering rates by considering the scattering processes in phonon system, it is considered that an increase in phonon-boundary scattering and simultaneously a decrease at the cross section of SOI layer are likely responsible for eliminating the phonon drag effect.
Phonon-drag Contribution to Seebeck Coefficient of Ge-on-insulator Substrate Fabricated by Wafer Bonding Process Manimuthu, Veerappan; Yoshida, Shoma; Suzuki, Yuhei; Salleh, Faiz; Arivanandhan, Mukannan; Kamakura, Yoshinari; Hayakawa, Yasuhiro; Ikeda, Hiroya
Makara Journal of Technology Vol. 19, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In order to build high-sensitivity infrared photodetectors using SiGe nanowires, we investigate the thermoelectric characteristics of Ge-on-insulator (GOI) layers as a reference for SiGe. We fabricate p-type GOI substrates with an impurity concentration of 1016-1018cm-3 by a wafer-bonding process using Ge and oxidized Si wafers. Annealing treatment is performed in order to further increase the bonding strength of Ge/SiO2 interface. We measure the Seebeck coefficient in the temperature range of 290-350 K. The Seebeck coefficient of the GOI layers is very close to the theoretical value for Ge, calculated on the basis of carrier transport. Hence, there is a small phonon-drag effect in GOI. On the other hand, the effect of phonon drag on the Seebeck coefficient of Si is usually significant. These results likely stem from the differences between phonon velocity, phonon mean-free-path, and hole mobility between Ge and Si.