Claim Missing Document
Check
Articles

Found 4 Documents
Search

The morphology of polyvinylpyrrolidone nanofibers containing Anredera cordifolia leaves Ida Sriyanti; Muhammad Rama Almafie; Yuda Prasetya Nugraha; Meutia Kamilatun Nuha Ap Idjan; Jaidan Jauhari
Jurnal Ilmiah Pendidikan Fisika Al-Biruni Vol 10, No 2 (2021): Jurnal Ilmiah Pendidikan Fisika Al-Biruni
Publisher : Universitas Islam Negeri Raden Intan Lampung, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1056.403 KB) | DOI: 10.24042/jipfalbiruni.v10i2.8820

Abstract

The electrospinning method has been used successfully to make polyvinylpyrrolidone nanofiber containing Anredera cordifolia leaves (BLE). The research methods used were qualitative and pure experiment method. Polyvinilpirolidone nanofibers containing BLE were prepared with three mass variations of the polyvinylpyrrolidone (% w/w), namely 12%, 10%, and 8% w/w, respectively. The results of the macroscopic photo show that the fiber structure looks white for PVP nanofibers and yellow for PVP/BLE nanofibers. The fiber morphology was analyzed using SEM and the results showed that PVP and all PVP/BLE nanofibers were like a continuous strand of crossbars with a diameter of 590 – 1190 nm. The decrease in the concentration of the PVP polymer led to a reduction in the diameter of the resulting nanofibers. The coefficients of variance (ε), of the PVP, BLE1, BLE2, and BLE3 nanofibers were 0.06, 0.09, 0.11, and 1.22, respectively. The physicochemical structure of the nanofibers was evaluated using XRD and FTIR. The chemical analysis (FTIR) showed that there was a molecular interaction between Anredera cordifolia leaves extract and polyvinylpyrrolidone in the form of hydrogen bonds. The physics analysis (XRD) shows the effect of the electrospinning process, which is to change the structure of BLE crystals to semi crystals. The application of PVP/BLE nanofiber for wounds dressing
Pengaruh Parameter Proses Electrospinning pada Komposit Polyvinylidene Fluoride/Polyacrylonitrile Nanofiber Ida Sriyanti; Muhammad Rama Almafie; Rahma Dani; Meutia Kamilatun Nuha Ap Idjan; Radiyati Umi Partan; M Rudi Sanjaya; Jaidan Jauhari
Jurnal Penelitian Pendidikan IPA Vol 9 No 9 (2023): September
Publisher : Postgraduate, University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jppipa.v9i9.4840

Abstract

PAN cannot be used as a stand-alone nanofiber, so it needs to be modified through copolymerization with other polymers, such as PVDF. It is composite mutually beneficial for both PVDF/PAN polymers. Study aims to see the effect of process parameters, such as voltage, flow rate and needle tip distance of PVDF/PAN composite nanofiber as well as molecular interaction and crystal structure, to confirm the presence of polymer in the nanofiber composite. The nanofibers with solution parameters PN1: PVDF 6% and PAN 8%, PN2: PVDF 6% and PAN 10%, and PN3: PVDF 6% and PAN 12% were prepared using electrospinning. Morphology of the process parameters of voltage (12kV, 16kV, 18kV), flow rate (30 μl/min, 60 μl/min, 90 μl/min) and needle tip distance (75 mm, 100 mm, 125 mm) were observed. The results showed straight and continuous fibre morphology, with a smooth surface and no beaded structure, with homogeneous fibre distribution with an increase in diameter from 394 ± 79 nm (NF1) to 851 ± 89 nm (NF3). The optimal state was in the solution of PN2: PAN 10% (w/w) and PVDF 6% (w/w), High Voltage 12 kV, Flow Rate PN3: 60 μl/min, and Needle to Collector Distance 75 mm.
SYNTHESIZE AND CHARACTERIZATION OF PVP/CA AND CHITOSAN NANOFIBER USING ELECTROSPINNING MEURETTA ALAWIYAH PULUNGAN; RAFLI PANDU RAMADHANI; MEUTIA KAMILATUN NUHA AP IDJAN; IDA SRIYANTI; M RUDI SANJAYA; JAIDAN JAUHARI; RADIYATI UMI PARTAN
Jurnal Pendidikan Fisika dan Keilmuan (JPFK) Vol 9, No 2 (2023)
Publisher : UNIVERISTAS PGRI MADIUN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/jpfk.v9i2.16916

Abstract

Nanofibers is one of the results of composites that have an important role in the industrial field, wound dressing, drug delivery and tissue engineering. Manufacturing of nanofibers can be carried out using electrospinning. Electrospinning is an easy, fast and simple technique for produced fibers with sizes ranging from micrometers to nanometers. We explained how to produce and the characteristics of nanofibers.  The purpose of this study was to see the characterization of PVP/CA fiber. The fiber were made with consentration of PVP 10.4% (w/w) and mixed with variation of chitosan 0.5%;1%;1.5% (w/w). Process parameter that used in this research such us flowrate 0,20 ml/hour, high voltage 12 kV, and speed of drum is 200 rpm with the distances to needle tip of collector is 75 cm. The result showed that the morphology of fiber PVP/CA are bead fiber and bead free. The average diameter of PVP/CA fibers was 234;267;325 nm. Adding chitosan made the diameter of fibers increase. The XRD result shown that the fibers of PVP/CA/AE has an amorf phase. The fibers were potentially used in any sectors.
The morphology of polyvinylpyrrolidone nanofibers containing Anredera cordifolia leaves Ida Sriyanti; Muhammad Rama Almafie; Yuda Prasetya Nugraha; Meutia Kamilatun Nuha Ap Idjan; Jaidan Jauhari
Jurnal Ilmiah Pendidikan Fisika Al-Biruni Vol 10, No 2 (2021): Jurnal Ilmiah Pendidikan Fisika Al-Biruni
Publisher : Universitas Islam Negeri Raden Intan Lampung, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/jipfalbiruni.v10i2.8820

Abstract

The electrospinning method has been used successfully to make polyvinylpyrrolidone nanofiber containing Anredera cordifolia leaves (BLE). The research methods used were qualitative and pure experiment method. Polyvinilpirolidone nanofibers containing BLE were prepared with three mass variations of the polyvinylpyrrolidone (% w/w), namely 12%, 10%, and 8% w/w, respectively. The results of the macroscopic photo show that the fiber structure looks white for PVP nanofibers and yellow for PVP/BLE nanofibers. The fiber morphology was analyzed using SEM and the results showed that PVP and all PVP/BLE nanofibers were like a continuous strand of crossbars with a diameter of 590 – 1190 nm. The decrease in the concentration of the PVP polymer led to a reduction in the diameter of the resulting nanofibers. The coefficients of variance (ε), of the PVP, BLE1, BLE2, and BLE3 nanofibers were 0.06, 0.09, 0.11, and 1.22, respectively. The physicochemical structure of the nanofibers was evaluated using XRD and FTIR. The chemical analysis (FTIR) showed that there was a molecular interaction between Anredera cordifolia leaves extract and polyvinylpyrrolidone in the form of hydrogen bonds. The physics analysis (XRD) shows the effect of the electrospinning process, which is to change the structure of BLE crystals to semi crystals. The application of PVP/BLE nanofiber for wounds dressing