Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analysis of Temperature Stability and Accuracy on the Design of Thermometer Calibrator Based on Fuzzy Logic And On/Off Control Yunik Pujiastuti; Andjar Pudji; Singgih Yudha Setiawan; Farid Amrinsani; Khongdet Phasinam
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 3 (2022): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i3.244

Abstract

A thermometer is a medical device used to measure body temperature. To maintain the accuracy of the thermometer measurement results, periodic calibration is required. Calibration is an activity to determine the conventional correctness of the indicator values of measuring instruments and measuring materials by comparing them with measurement standards that can be traced to national and international standards for units of measure and/or international and certified reference materials. Based on the results of the identification of chronological problems that have been observed, a body thermometer that measures body temperature is needed so and a calibrator is needed to maintain the accuracy of the thermometer. The purpose of this study was to analyze the Temperature Stability and Accuracy of the Body Thermometer Calibrator Based on on-Off Control and Fuzzy Logic Control. The contribution of this research to this tool will use the development of a fuzzy logic control method to produce temperature stability in the Body Thermometer Calibrator (Digital). The method used in this study used fuzzy control and on-off control. The results of this study from the suitability test obtained a maximum error of 0.2% in the fuzzy control and 0.6% in the On-Off control. The average rise time difference for the two controls was 13.53 Seconds. The average settling time difference is 130.46 seconds. The results of this study can be concluded that the Fuzzy System is better than the On / Off system so the Fuzzy system is more suitable for thermometer calibration media.
The Performance Analysis of the Infrared Photodiode Sensor to Infusion Set on Infusion Device Analyzer Machine Anisa Rahma Astuti; Syaifudin; Triana Rahmawati; Khongdet Phasinam
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i1.274

Abstract

Infusion pumps and syringe pumps are devices used to administer liquid medicines to patients. The frequency of using the infusion pump and syringe pump in the long term will affect the accuracy of the tool. Accuracy is very important in dosing to patients in critical conditions who require intensive care to prevent fluid balance in the body. Therefore, periodic calibration of medical devices is required at least once a year. Calibration according to Permenkes No. 54 of 2015 is a calibration activity to determine the correctness of a tool. The purpose of this research is to make an Infusion Device Analyzer (IDA) with a TFT LCD displaying a graph of flowrate parameters. The method used is to analyze the flowrate value using an infrared photodiode sensor and can see the stability of the flowrate graph on a 7-inch TFT LCD from the use of 2 brands of syringes and an infusion set. The results obtained can be stored on the SD Card. The measurement results show that the error in the performance of the syringe and infusion pump read by the module on Channel 1 with the Terumo syringe is 0.15 (10 ml/h), 0.1 (50ml/h) and 0.03 (100ml/h). . On Channel 2 it is 0.02(10ml/hour), 0.03 (50ml/hour) and 0.04(100ml/hour). When using the B-Braun Channel 1 syringe, 0.25 (10ml/h), 009(50ml/h) and 0.08(100ml/h) are used. And on Channel 2 it is 0.62 (10ml/h), 0.15 (50ml/h), and 7.3 (100ml/h). When using the Terumo Channel 1 brand infusion set at 0.05 (10ml/h), 0.3(50ml/h), and 0.04(100ml/h). On Channel 2 it is 0.14(10ml/hour), 0.02 (50ml/hour) and 0.18 (100 ml/hour). When using the B-Braun Channel 1 Infusion Set, it is 0.07(10ml/h), 0.02(50 ml/h), and 0.03 (100ml/h). Then on Channel 2 0.07 (10ml/hour), 0.02(50 ml/hour), and 0.1(100ml/hour). The conclusion of this study is that the use of 2 different infusion sets greatly affects the readings, other than that other factors can also affect the readings including the position of the hose and the placement of sensors on each channel. From the manufacture of this tool, it is expected that users can be more efficient in using a 2-channel Infusion Device analyzer which can be run at the same time.