I Dewa Gede Hari Wisana
Department of Medical Electronics Technology, Poltekkes Kemenkes Surabaya

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Accuracy Analysis on Dual Pressure (Positive and Negative) Calibrator Design to Investigate the Sensor Response Abdi Wibowo; Triana Rahmawati; Priyambada Cahya Nugraha; I Dewa Gede Hari Wisana; Honey Honey; Mansour Asghari
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 3 (2022): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i3.247

Abstract

Calibration is an activity to determine the conventional correctness of the value of measuring instrument designation and measuring material by comparing against the measuring standards that are traced to national or international standards. A sphygmomanometer is a device used to measure blood pressure. Suction pump is a tool to suck various types of fluid formed from the body's secretion process that under certain conditions need to be cleaned. DPM (Digital Pressure Meter) is a tool for calibrating sphygmomanometers and suction pumps. Therefore, it takes a calibrator device to calibrate both tools. The purpose of this study was to determine the sensor response and analyze the accuracy of the design of a dual pressure calibrator (+ and -) that can be used for two devices at once (sphygmomanometer and suction pump) using one sensor (pss-C01V-R18 autonics). The research was conducted at the Campus of the Department of Electrical Engineering Of The Ministry of Health Surabaya, first the data was taken from three different brands of sphygmomanometer and suction pump, the second data was taken using module calibrators, and the third data collection from modules and comparison tools (DPM). In this study successfully measured positive and negative pressure with autonics sensors, the results obtained are accurate in accordance with the results of standard tools. The result of this tool can be used for dual pressure calibrators using autonics sensors.
QRS Detection On Heart Rate Variability Readings using Two Moving Average Methods Ayu Nissa Berlianri Rizhky; I Dewa Gede Hari Wisana; Sima Das
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): February
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v5i1.258

Abstract

Heart Rate Variability or heart rate in humans is used to unify the heart rate in humans, the function of the heart rate monitor is used to unite the human heart rate. The purpose of making this tool is to read the human heart rate using the Two Moving Average method or moving average which makes it easy to find the R peak to peak signal, making it easier to read. This is achieved by discovering and studying each window size change specified by, so that it can be seen the change in every two moving averages for each window size value. This study uses the Arduino Nano system for data processing and uses Delphi to display the processed data. In this study examined signaling and heart rate monitoring for 5 minutes. In this study it can be said that, the best window size with the best signal results for measuring heart rate is the window size 15 . this method is a method with a good accuracy rate of 98%. And also this method can be displayed directly by displaying the RR Interval and HRV value for 10 minutes with results close to 0. This method is recommended to detect high enough P and T signal.
Monitoring the Stability of Oxygen Flow Analyzer on Oxygen Station in the Hospital Nur Khabibatul Rosida; Triana Rahmawati; I Dewa Gede Hari Wisana; Maduka Nosike
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): February
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v5i1.265

Abstract

Oxygen therapy besides having benefits also has certain dangers and side effects. For this reason, oxygen therapy must be given at the proper dose by monitoring the patient regularly and adjusting the oxygen flowmeter. The accuracy of flowmeter under standard conditions is guaranteed by manufacturer. With time and use the precision may change and the flow accuracy given in a hospital setting may differ from the original value. Thepurpose of this research is to conduct further research on Oxygen flow analyzer which focuses on discussing the accuracy and stability of the oxygen flow sensor against the gold standard. Contribution of this study is to increase the range of oxygen flowrate measurement to 15 liters per minute (LPM). This research uses Arduino Mega while the gas flow sensor used is legris flow sensor. The measurement results are displayed on TFT LCD equipped with SD Card data storage. The gas flowrate is regulated using a flowmeter (GEA). Meanwhile the comparison tools using Oxygen Analyzer and 1 m3 oxygen gas cylinder. At the testing stage, the sensor reading value on the module that appears on the TFT LCD is compared with the resultsf a comparison tool with a measurement range of 1 LPM to 15 LPM 6 times at each point. The conclusion from these results is that the calibrator module has a relative error is still within the allowable tolerance limit of ±10%. INDEX TERMS Calibration, Oxygen Flow Analyzer, Flowmeter, TFT Display