Claim Missing Document
Check
Articles

Found 2 Documents
Search

An Analysis of Spring-back and Spring-go on Variation of V-Dies Bending Angle Using Galvanized SGCC Steel Sheet Khoirudin Khoirudin; Sukarman Sukarman; Siswanto Siswanto; Nana Rahdiana; Ade Suhara
Jurnal Teknik Mesin Mechanical Xplore Vol 3 No 1 (2022): Jurnal Teknik Mesin Mechanical Xplore (JTMMX)
Publisher : Mechanical Engineering Department Universitas Buana Perjuangan Karawang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36805/jtmmx.v3i1.2753

Abstract

This study discusses the phenomenon of spring-back and spring-go in the bending kinematic shaping process using V-bending dies and SGCC galvanized steel sheet (JIS G 3302) material. During the bending process, the zinc layer on the surface of the galvanized steel must not be damaged. The zinc coating on galvanized sheet steel will affect the material forming process (metal forming process). This study employed an experimental design with four input variables: die opening L (mm), punch angle (punch engel), punch speed (punch speed), and bending force (force bending). The input factors for the experiment are 35 mm opening, 40o punch angle, 30 mm/minute punch speed, and 7500 N bending force. In the die opening setting conditions, the maximum spring-back angle is 35 mm, the punch angle is 40 °, the punch speed is 30 mm/minute, and the bending force is 6500 N. The average minimum and maximum spring-back angles in this condition are 0.71o and 4.08o, respectively. The bending force is 7000 N, the punch angle is 50 °, the punch speed is 40 mm/minute, and the minimum spring-go angle is 30o. In die opening parameters, the maximum spring-go angle achieved is 35o, the punch angle is 60o, the punch speed is 50 mm/minute, and the bending force is 700 N. The average minimum and maximum spring-go angles are 1.90o and 6.23o, respectively.
Enhancement Material Removal Rate Optimization of Sinker EDM Process Parameters Using a Rectangular Graphite Electrode Sumanto Sumanto; Acim Maulana; Dodi Mulyadi; Khoirudin Khoirudin; Siswanto Siswanto; Sukarman Sukarman; Ade Suhara; Safril Safril
Jurnal Optimasi Sistem Industri Vol. 21 No. 2 (2022): Published in November 2022
Publisher : The Industrial Engineering Department of Engineering Faculty at Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/josi.v21.n2.p87-96.2022

Abstract

This article discusses the optimization of sinker electrical discharge machining (sinker EDM) processes using SPHC material that has been hardened. The sinker EDM method is widely employed, for example, in the production of moulds, dies, and automotive and aeronautical components. There is neither contact nor a cutting force between the electrode and the   work material in sinker EDM. The disadvantage of the sinker EDM is its low material removal rate. This work aims to optimize the material removal rate (MRR) using graphene electrodes in a rectangular configuration. The SPHC material was selected to determine the optimum MRR model of the sinker EDM input parameter. The Taguchi experimental design was chosen. The Taguchi technique used three input parameters and three experimental levels. Pulse current (I), spark on time (Ton), and gap voltage were among the input parameters (Vg). The graphite rectangle was chosen as an electrode material. The input parameter effect was evaluated by S/N ratio analysis. The result showed that pulse current has the most significant impact on material removal rate in the initial study, followed by spark on time and gap voltage. All input parameters are directly proportional to the MRR. For optimal material removal rate, the third level of pulse current, spark on time, and gap voltage must be maintained. In addition, the proposed Taguchi optimization model could be applied to an existing workshop floor as a simple and practical electronic tool for predicting wear and future research.