Hairus Abdullah
Universitas Prima Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Conversion of Green Silica from Corn Leaf into Zeolites Na A-X Teguh Kurniawan; Dhimas Satria; Juniafit Bima Saputra; Muhammad Roil Bilad; Nik Abdul Hadi Md Nordin; Hairus Abdullah
Indonesian Journal of Science and Technology Vol 7, No 2 (2022): IJOST: VOLUME 7, ISSUE 2, September 2022
Publisher : Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/ijost.v7i2.45831

Abstract

Combustion of corn leaf as a model of biomass from agricultural waste is a simple way to obtain the energy. It produces a low-value by-product of ash and is rich in silica that can become a precursor for zeolite production. In this study, acid-treated corn leaves combustion was performed to produce high purity silica (SiO2). The diffraction pattern suggested that the extracted silica was amorphous without the impurities phase. Additionally, the nitrogen isotherm indicated that the material was highly mesoporous silica with a total surface area of 200 m2/g. The hydrothermal method was then applied with a composition molar ratio of 1.25SiO2:1Al2O3:5Na2O:250H2O to synthesize zeolites from the silica. The temperature and time effect on the hydrothermal zeolite’s synthesis was investigated. The diffraction pattern shows that high crystalline zeolite Na A-X was produced at temperatures of 100°C and 8 h hydrothermal time. According to nitrogen physisorption analysis, the zeolite Na A-X consisted of micropores with a total surface area of 270 m2/g. The morphology of zeolite Na A-X was cube for the Na-A and octahedral for the Na-X. The hydrothermal temperature and time highly affected the zeolite formed. This research suggested that the ash waste could be valorized through conversion into a high economic value zeolites.
PREPARATION OF FE-DOPED ZINC OXYSULFIDE (Fe-Zn(O,S)) WITH SURFACE DEFECT FOR HYDROGEN EVOLUTION REACTION Hardy Shuwanto; Jenni Lie; Hairus Abdullah; Subur P. Pasaribu
JURNAL KIMIA MULAWARMAN Vol 20 No 2 (2023)
Publisher : Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30872/jkm.v20i2.1108

Abstract

In this study, Fe-doped Zn(O,S) has been successfully fabricated by a one-step preparation process using chemical wet method. The Fe-doped Zn(O,S) photocatalysts were studied by varying the content of Fe dopant. The characterizations of Fe-doped Zn(O,S) were carried out by SEM and XRD analyses to determine the morphology and phase of samples. Furthermore, the optical and electrochemical properties were characterized through EIS, TPC, DRS and PL analyses. Briefly, Zn(O,S) with 5% Fe amount exhibited the most optimum condition as compared to other Fe amounts in which it showed better charge separation with the hydrogen evolution amount of 29000 mikromol/g in 10% EtOH solution. Lastly, the proposed mechanism is initially by the trapping of water molecules in the oxygen vacancy (defect) in Fe-Zn(O,S) sample followed by the reduction to generate hydrogen (H2) gas via the intermediate of proton (H+).