Claim Missing Document
Check
Articles

Found 9 Documents
Search

ANALISA PEMBANGKIT LISTRIK TENAGA ANGIN SEBAGAI PENERANGAN AREA ROOFTOP KAMPUS C JGU Muhamad Aris; Ade Sunardi; Riyan Ariyansah
Journal Teknik Mesin, Elektro, Informatika, Kelautan dan Sains Vol 3 No 1 (2023): Jurnal Teknik Mesin, Elektro, Informatika, Kelautan & Sains
Publisher : Jurusan Teknik Mesin Universitas Pattimura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/metiks.2023.3.1.10-16

Abstract

Kondisi geografis Kampus Jakarta Global University (JGU) Depok mempunyai sumber daya alam dengan potensi yang baik untuk pengembangan energi terbarukan. Energi angin merupakan salah satu pemanfaatan energi terbarukan yang memiliki potensi sangat besar untuk dikembangkan. Penggunaan sumber pembangkit tenaga listrik yang digunakan masih cenderung menggunakan sumber daya alam yang akan habis dipakai dalam beberapa puluh tahun mendatang. Skripsi ini dibuat dengan memanfaatkan sumber daya alam yang dimiliki kampus JGU Depok. Sumber daya angin ini dapat dimanfaatkan untuk menghasilkan listrik, dengan menggunakan sebuah turbin angin sehingga penelitian ini merupakan menganalisa sebuah pembangkit listrik tenaga angina/bayu (PLTB) sejalan dengan pemerintah dengan mengembangkan energi terbarukan tetap dengan dilakukannya skripsi ini merupakan suatu langkah awal guna memberikan dampak besar kedepannya yaitu menjadikan kampus C JGU ini menjadi kempus mandiri energi. Untuk itu, kami akan menerapkan Pembangkit Listrik Tenaga Angin sebagai Penerang Area rooftop Kampus C JGU dengan harapan dapat bermanfaat untuk Pihak Kampus C JGU.
PERANCANGAN STABILIZER PEMBANGKIT LISTRIK TENAGA ANGIN UNTUK PENGISIAN BATERAI MOBIL Abdullah Darussalam; Ade Sunardi; Riyan Ariyansah
Journal Teknik Mesin, Elektro, Informatika, Kelautan dan Sains Vol 3 No 1 (2023): Jurnal Teknik Mesin, Elektro, Informatika, Kelautan & Sains
Publisher : Jurusan Teknik Mesin Universitas Pattimura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/metiks.2023.3.1.1-9

Abstract

Sistem kerja Pembangkit listrik Tenaga Angin ini secara sederhana memanfaatkan angin sebagai penggerak turbin kemudian dikonversikan menjadi energi listrik, namun listrik yang dihasilkan adalah berupa arus bolak balik karena menggunakan generator AC, oleh karena itu dibutuhkan rangkaian penyearah untuk merubah tegangan AC ke DC. Tingginya polusi seiring meningkatnya jumlah kendaraan bermotor khususnya mobil dan semakin menipisnya bahan bakar fosil, maka dibutuhkan mobil berbahan bakar hemat energi. Tujuan yang ingin dicapai adalah untuk membuat Simulasi Performa Pembangkit Listrik Tenaga Angin Pada Mobil Listrik. Metode yang digunakan adalah merancang dan membuat kincir angin yang menggerakan generator untuk menyuplai arus listrik pengisian pada baterai. Baterai digunakan sebagai sumber arus untuk seluruh sistem kelistrikan serta sebagai tempat untuk menyimpan energi listrik pada saat terjadi proses pengisian. Baterai berfungsi untuk mensuplai arus listrik pada saat sistem starter agar mesin dapat dihidupkan, lampu-lampu dan komponen-komponen kelistrikan lainnya. Karena penggunaan energi listrik yang dibutuhkan oleh mobil listrik ini.
Electric Car Frame Body Design Fullset Dynamo Capacity 3.000 Watt With Solidworks Modeling 2020 Hardianto Hardianto; Ade Sunardi; Ryan Ariansyah
Journal of Global Engineering Research and Science Vol. 1 No. 1 (2022): Journal of Global Engineering Research & Science (J-GERS)
Publisher : Jakarta Global University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56904/jgers.v1i1.4

Abstract

The problem of safety and comfort of the means of transportation is closely related to the construction of the main frame of the vehicle. In this study, the frame body of an electric car with a capacity of 3.000 watts is the object of study, in order to determine the simulation of loading on the frame body of an electric car with a capacity of 3.000 watts. The research was conducted using an experimental method with the help of the Solidworks 2020 software. The data analyzed was data from the results of testing the design drawing of a 3.000-Watt electric car body frame designed with Solidworks Software and simulated loading of 50 N, 100 N and 150 N. The simulation results of Von mises stress loading of 50 N with a maximum value of 1,670 x 106 N/m2 are marked in red on the simulation graph, while the minimum value from the simulation results can be concluded directly that is 1,009 x 10-2 N/m2 marked with color blue on the simulation graph. The simulation results of Von mises stress loading of 100 N with a maximum value of 3.43 x 106 N/m2 are marked in red on the simulation graph, while the minimum value from the simulation results can be concluded directly, namely 4.57 x 10-2 N/m2 is marked in blue on the simulation graph. The simulation results of Von mises stress loading of 150 N with a maximum value of 5.018 x 106 N/m2 are marked in red on the simulation graph, while the minimum value from the simulation results can be concluded directly, namely 2.150 x 10-2 N/m2 marked with color blue on the simulation graph.
Aerodynamic Simulation on Roof for 3,000 Watt Electric Car With Ansys R1 2022 Modeling Cecep Hamidi Hamidi; Ade Sunardi; Ryan Ariansyah
Journal of Global Engineering Research and Science Vol. 1 No. 1 (2022): Journal of Global Engineering Research & Science (J-GERS)
Publisher : Jakarta Global University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56904/jgers.v1i1.6

Abstract

Technological advances in electronics and machinery, especially in the design of electric motors, are the first step in the development of electric cars. The body is the main part of the car that functions as a construction protection and electrical panel from external factors such as sunlight, rain, and others. In this study, an analysis of the body and roof of an electric vehicle will be carried out to determine the flow of fluid or air that occurs in the car body. How to design the body and roof of a car, how is the air velocity vector that occurs around the roof of the car at speeds of 10 km/hour, 40 km/hour, and 70 km/hour. Before the method starts, literature studies, data collection, the process of designing an electric car body model, aerodynamic analysis through the ansys R1 2022 software, taking test results and conclusions, simulation data analysis techniques are conducting searches on the frontal area, entering geometry in the ansys model, setting sizes and setting of mesh clauses and airflow calculations. The results of the aerodynamic simulation of speeds of 10 km/hour, 40 km/hour, and 70 km/hour. There are parts or positions that block the air the most as shown in red, while those with the least air resistance are dark blue, the maximum speed results are shown in dark blue, while the minimum speed is shown in red so that the area has the greatest resistance. air.
Design and Manufacture of Electric Car Chasis Frame for Two Passengers With Solidworks Modeling 2020 Ahmad Zaenuri; Ade Sunardi; Kasum Kasum
Journal of Global Engineering Research and Science Vol. 1 No. 1 (2022): Journal of Global Engineering Research & Science (J-GERS)
Publisher : Jakarta Global University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56904/jgers.v1i1.12

Abstract

An electric car is a car that is driven by a DC motor using energy stored in the battery. The use of electric cars is considered more effective in addition to not causing air pollution and a simpler engine construction and as an alternative means of transportation. The frame/chassis is the main part of the car that functions to support other components such as the engine, battery, steering system, braking system, driver's seat and other vehicle equipment, and also as a vibration damper if the vehicle runs on various types of road surfaces and various modes of motion. From the vehicle, the frame used is a ladder frame which has a simpler and stronger structure. This study aims to design and manufacture the frame of an electric car and analyze the load received and the maximum load that the frame can withstand. This research begins with the design of the frame, then the assembly of the frame will be carried out then data will be collected on the frame which will then be processed to determine the load received by the frame and analyze the value of the welding stress on the frame.
Rancang Bangun Stasiun Pengisian Daya Listrik Berbasis Panel Surya dengan Variasi Profil Pada Penopang Panel Surya Aji Saputra; Ade Sunardi; Mohamad Zaenudin
Integrated Mechanical Engineering Journal Vol. 1 No. 1 (2023): Integrated Mechanical Engineering Journal (IMEJOUR) Vol. 1, No. 1, November 202
Publisher : Jurusan Teknik Mesin Universitas Global Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56904/imejour.v1i1.73

Abstract

Solar panel-based electric charging stations are a combination of electricity sources and solar panels, allowing efficient and effective charging and helping to source electricity from natural energy in the form of renewable energy, namely the sun. The use of solar panels as the main energy source can reduce dependence on limited energy sources and produce lower greenhouse gas emissions and reduce dependence on fossil energy sources. The purpose of this thesis is to design and analyze the strength and durability of solar panel-based electric charging stations on their supports. The method used in this study is quantitative data taken using Ansys software simulations. The results showed that Design 1 on the solar panel supports had a maximum deformation of 0.2397 mm at an angle of 70 and design 2 produced a maximum deformation of 0.0052439 mm at an angle of 70 to the right/left. Based on these results, it can be concluded that the design of 1 solar panel support is better in terms of strength and durability because the load on the solar panel that is on the support only has an effect of 0.2397 mm which can withstand a load of around 320 N.
Pengaruh Variasi Stuktur Rangka Terhadap Kekuatan Pembebanan Pada Stasiun Pengisian Daya Listrik dengan Panel Surya Ade Suparman; Ade Sunardi; Mohamad Zaenudin
Integrated Mechanical Engineering Journal Vol. 1 No. 1 (2023): Integrated Mechanical Engineering Journal (IMEJOUR) Vol. 1, No. 1, November 202
Publisher : Jurusan Teknik Mesin Universitas Global Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56904/imejour.v1i1.75

Abstract

The use of solar panels in electric power charging stations is becoming increasingly popular as part of efforts to adopt renewable energy sources. In this context, the structural framework supporting the solar panels plays a crucial role in maintaining the stability and reliability of the system. Therefore, this thesis aims to investigate the influence of various structural framework variations on the strength of static loading in solar-powered electric charging stations. The research methodology employed simulation of static loading at three different load levels, namely 40 kg, 50 kg, and 60 kg. The analysis was conducted by comparing the equivalent stresses and total deformations between "Design 1" and "Design 2" at each load level. The research findings reveal significant differences in equivalent stresses and total deformations between the two designs at each load level. Design 1, with a stiffer structural framework, exhibited higher equivalent stresses and greater total deformations compared to Design 2. Consequently, this study provides a deeper understanding of the influence of various structural framework variations on the strength of static loading in solar panel support structures. These findings can serve as a basis for optimizing the structural design of solar-powered electric charging systems.
Analisis Ketahanan Rangka Stasiun Pengisian Kendaraan Listrik Berbasis Panel Surya Portabel Terhadap Laju Angin Muhammad Imam; Ade Sunardi; Mohamad Zaenudin
Integrated Mechanical Engineering Journal Vol. 1 No. 1 (2023): Integrated Mechanical Engineering Journal (IMEJOUR) Vol. 1, No. 1, November 202
Publisher : Jurusan Teknik Mesin Universitas Global Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56904/imejour.v1i1.76

Abstract

High wind velocity can induce external pressures and loads on the structural framework of an Electric Vehicle Charging Station (EVCS), jeopardizing the overall stability and structural integrity of the framework. The objective of this research is to ascertain the magnitude of aerodynamic drag force and the maximum pressure values on the surface of the EVCS framework, with respect to variations in wind velocity. The methodology employed in this study involves Computational Fluid Dynamics (CFD) simulations utilizing the Solidworks Flow Simulation. Three wind velocity scenarios were considered: 3 km/h, 6 km/h, and 9 km/h, allowing for the observation of airflow acceleration phenomena, aerodynamic drag force values, and peak pressure distributions on the EVCS framework's surface. Research findings reveal that the aerodynamic drag force at a wind velocity of 3 km/h measures 22,34 N, escalating to 90,42 N at 6 km/h wind velocity, and reaching 202,7 N at 9 km/h wind velocity. Furthermore, the highest-pressure value at a wind velocity of 3 km/h is 101325,45 Pa. As the wind velocity increases to 6 km/h, the maximum pressure value rises to 101338,18 Pa. Under the condition of the highest input wind velocity, i.e., 9 km/h, the peak pressure reaches 101353,46 Pa.
Analisis Perbandingan Komposisi Biobriket Berbahan Baku Tempurung Kelapa dan Kayu Rambutan dengan Perekat Pati Kanji dan Molase M Fikri; Ade Sunardi; Mohamad Zaenudin
JURNAL CRANKSHAFT Vol 6, No 3 (2023): Jurnal Crankshaft Vol.6 No.3 (2023)
Publisher : Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24176/crankshaft.v6i3.11451

Abstract

Semakin berkurangnya jumlah bahan bakar fosil yang tersedia telah mendorong kebutuhan akan sumber energi alternatif dan terbarukan. Oleh karena itu, pencarian untuk menemukan sumber bahan alternatif yang dapat diperbarui, ekonomis, dan ramah lingkungan menjadi suatu kegiatan yang sangat penting untuk pengembangan sumber energi yang lebih berkelanjutan. Salah satu solusinya adalah melalui penggunaan Biobriket, yaitu briket atau arang yang dihasilkan dari limbah biomassa seperti dedaunan, ranting, jerami, kayu, dan berbagai jenis bahan hayati lainnya. Pembuatan Biobriket dipengaruhi oleh beberapa faktor, termasuk bahan yang digunakan, kehalusan arang hasil karbonisasi, massa jenis arang, temperatur karbonisasi, variasi komposisi, dan tekanan pada proses pencetakan. Biobriket ini memiliki keunggulan dalam menghasilkan asap yang sangat sedikit, bahkan hanya timbul saat proses penyalaan. Pada penelitian ini, biobriket dibuat sedemikian rupa dengan menggunakan campuran tempurung kelapa dan kayu rambutan dengan komposisi yang berbeda-beda. Dua perekat digunakan pada penelitian ini, yaitu molase dan tepung kanji. Hasil penelitian menunjukkan bahwa campuran briket dengan kualitas terbaik adalah briket dengan komposisi campuran 90% arang dan 10% perekat (molase dan pati kanji). Hal ini disimpulkan dari beberapa faktor pengujian yaitu, densitas, shutter index, laju pembakaran, dan sisa abu. Penelitian ini telah berhasil memberikan wawasan mengenai pembuatan biobriket dengan menggunakan bahan baku tempurung kelapa dan kayu rambutan berperekat molase dan tepung kanji.