Aliati Iswantari
Department of Aquatic Resources Management, IPB University, Bogor, Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

RESILIENCE AND PHYSIOLOGICAL RESPONSES OF THE DOMESTICATED ASIAN REDTAIL CATFISH Hemibagrus nemurus TO HYPOXIA CONDITION Aliati Iswantari; Kurniawan Kurniawan; Vitas Atmadi Prakoso; Deni Radona; Deni Irawan; Fera Permata Putri; Wahyulia Cahyanti; Otong Zenal Arifin; Jojo Subagja; Rudhy Gustiano; Irin Iriana Kusmini; Arif Wibowo; Anang Hari Kristanto
Indonesian Aquaculture Journal Vol 18, No 1 (2023): (June, 2023)
Publisher : Center for Fisheries Research, Agency for Marine and Fisheries Research and Human Resource

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15578/iaj.18.1.2023.53-60

Abstract

Hypoxia is one of the critical issues in aquaculture production systems as it can lead to physiological disturbances in cultured fish. This research aimed to evaluate the tolerance level and physiological responses of domesticated Asian redtail catfish Hemibagrus nemurus reared in various hypoxia conditions. A total of 12 fish/treatment were acclimated to gradually decreased dissolved oxygen treatments until fish experienced aquatic surface respiratory (ASR) and loss of equilibrium (LOE). Cortisol, haemoglobin, and glucose levels were detected in the blood plasma to evaluate the stress response of the fish to hypoxia. The result showed that ASR of H. nemurus was identified at 2.17 ± 0.14 ppm of dissolved oxygen (DO) concentration with the percentage of ASR was 77.67 ± 9.53%, while LOE critical of H. nemurus happened at 0.63 ± 0.15 ppm of DO where 55.56 ± 4.81% of the fish experienced LOE. There were significant differences in the values of physiological parameters (blood cortisol, haemoglobin, and glucose) between control and treatments as fish experienced LOE (P<0.05). In the present  study, it was found that the Asian redtail catfish is classified as a hypoxia-sensitive fish group. Tehis finding is valuable information for the rearing and growing of the fish to provide an optimal DO concentration for their growth and survival.