Claim Missing Document
Check
Articles

Found 3 Documents
Search

Predicting Ocean Current Temperature Off the East Coast of America with XGBoost and Random Forest Algorithms Using Rstudio Alfaris, Lulut; Firdaus, Anas Noor; Nyuswantoro, Ukta Indra; Siagian, Ruben Cornelius; Muhammad, Aldi Cahya; Hassan, Rohana; Aunzo, Jr., Rodulfo T.; Ariefka, Reza
ILMU KELAUTAN: Indonesian Journal of Marine Sciences Vol 29, No 2 (2024): Ilmu Kelautan
Publisher : Marine Science Department Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ik.ijms.29.2.273-284

Abstract

This research investigates the comparative predictive efficacy of two leading machine learning methodologies, specifically the XGBoost and Random Forest models, in estimating ocean temperature dynamics in the TS Gulf Stream and Labrador Current regions along the east coast of North America. Using annual temperature datasets and relevant oceanographic parameters, the data is carefully processed, cleaned and sorted into training and test subsets via the RStudio Platform. The performance evaluation model is carried out using predetermined machine learning assessment criteria, including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and R-squared. The results show the superiority of the XGBoost model compared to Random Forest in terms of prediction accuracy and minimizing prediction errors. The XGBoost model shows lower MSE values and higher R-squared values than the Random Forest model, indicating its better capacity in explaining data variations. XGBoost consistently provides more accurate predictions and shows higher sensitivity in identifying important factors influencing ocean temperature fluctuations than Random Forest. This research significantly improves understanding and prognostic capabilities regarding ocean temperature dynamics in the TS Gulf Stream and Labrador Current regions. Empirical evidence underlines the efficacy of the XGBoost model in predicting ocean temperatures in the studied region. Continuous model evaluation and parameter refinement for both methodologies is critical to establishing standards for optimal prediction performance. The findings of this research have implications for the fields of oceanography and climate science, and offer potential pathways to comprehensively understand and mitigate the impacts of climate change on marine ecosystems.
Heat Conduction in Cylindrical Coordinates with Time-Varying Conduction Coefficients: A Practical Engineering Approach Alfaris, Lulut; Siagian, Ruben Cornelius; Muhammad, Aldi Cahya; Nasution, Budiman
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 7, No 2 (2023)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um016v7i22023p157

Abstract

This research aims to develop a mathematical method for expressing the Laplace operator in cylindrical coordinates and applying it to solve heat conduction equations in various scenarios. The method commences by transforming Cartesian coordinates into cylindrical coordinates and identifying the necessary substitutions. The result is the expression of the Laplace operator in cylindrical coordinates, which is subsequently employed to address heat conduction equations within cylindrical coordinates. Various cases encompassing different initial and boundary conditions, as well as variations in the conduction coefficient over time, are meticulously considered. In each instance, precise mathematical solutions are determined and subjected to thorough analysis. This study carries substantial implications for comprehending heat transfer within cylindrical coordinate systems and finds relevance in a wide array of scientific and engineering contexts. The research's findings can be harnessed for technology development, heating system design, and heat transfer modeling across diverse applications, including mechanical engineering and materials science. Therefore, the research's contribution holds paramount significance in advancing our understanding of heat transfer within cylindrical coordinates and in devising more efficient and accurate solutions for an array of heat-related issues within the realms of science and engineering.
Exploring Cosmological Dynamics: From FLRW Universe to Cosmic Microwave Background Fluctuations Nasution, Budiman; Ritonga, Winsyahputra; Siagian, Ruben Cornelius; Harahap, Veryyon; Alfaris, Lulut; Muhammad, Aldi Cahya; Laeiq, Nazish
EKSAKTA: Berkala Ilmiah Bidang MIPA Vol. 23 No. 04 (2023): Eksakta : Berkala Ilmiah Bidang MIPA (E-ISSN : 2549-7464)
Publisher : Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Negeri Padang, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/eksakta/vol23-iss04/427

Abstract

This study explores key aspects of cosmology, starting with the foundational FLRW equations that describe the universe's evolution, emphasizing its homogeneity and isotropy. We incorporate mass viscosity into these equations, shedding light on its role in shaping the universe. Observations of Type Ia supernovae inform our understanding of cosmological parameters, including the Hubble rate and dark energy's effects on cosmic expansion. Cosmic Microwave Background fluctuations are analyzed for insights into cosmic structure. Baryon Acoustic Oscillations provide additional data for estimating critical parameters. We also examine the Hubble Parameter to understand its relation to cosmological parameters. Lastly, we introduce statefinder analysis, unveiling the universe's behavior through key indicators like "r" and "s." This study offers comprehensive insights into cosmology and the universe's evolution.