Muhammad Dliyauddin
Universitas Dian Nuswantoro, Semarang

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Enhancing Machine Learning Accuracy in Detecting Preventable Diseases using Backward Elimination Method Muhammad Dliyauddin; Guruh Fajar Shidik; Affandy Affandy; M. Arief Soeleman
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 8, No 1 (2024): Januari 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v8i1.7073

Abstract

In the current landscape of abundant high-dimensional datasets, addressing classification challenges is pivotal. While prior studies have effectively utilized Backward Elimination (BE) for disease detection, there is a notable absence of research demonstrating the method's significance through comprehensive comparisons across diverse databases. The study aims to extend its contribution by applying BE across multiple machine learning algorithms (MLAs)Nave Bayes (NB), k-Nearest Neighbors (KNN), and Support Vector Machine (SVM)on datasets associated with preventable diseases (i.e. heart failure (HF), breast cancer (BC), and diabetes). This study aims to elucidate and recommend significant differences observed in the application of BE across diverse datasets and machine learning (ML) methods. This study conducted testing on four distinct datasetsraisin, HF, BC, and early-stage diabetes risk prediction datasets. Each dataset underwent evaluation with three MLAs: NB, KNN, and SVM. The application of BE successfully eliminated non-significant attributes, retaining only influential ones in the model. In addition, t-test results revealed a significant impact on accuracy across all datasets (p-value < 0.05). In specific algorithmic evaluations, SVM exhibited the highest accuracy for the raisin dataset at 87.22%. Additionally, KNN attained the utmost accuracy in the heart failure dataset with an accuracy of 86.31%. In the breast cancer dataset, KNN again excelled, achieving an accuracy of 83.56%. For the diabetes dataset, KNN proved the most accurate, reaching 96.15%. These results underscore the efficacy of BE in enhancing the execution of MLAs for disease detection.