Rizkha Fadhilla
Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95 Ciputat Tangerang Selatan 15412

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Synthesis of Metal-Organic Framework (MOF) Cr-PTC-HIna for Heavy Metal Ion Adsorption Nurhasni Nurhasni; Adawiah Adawiah; Wahyudin Wahyudin; Rizka Hadriyani; Leni Andriyani; Rizkha Fadhilla; Agustino Zulys; Dede Sukandar
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20069

Abstract

As an adsorbent material, Metal-Organic Framework (MOF) provides several advantages, such as large surface area and pore volume, as well as stability in aqueous systems both in acidic, basic, and neutral conditions. The research successfully made a metal organic framework (MOF) from chromium and perylene that was modulated by isonicotinic acid. This was done using three different methods: hydrothermal (Cr-PTC-HIna-HT), solvothermal (Cr-PTC-HIna-ST), and sonochemical (Cr-PTC-HIna-SC). The Cr-PTC-HIna-SC showed the greatest Pb2+ ion adsorption capacity. The optimum adsorption of Pb2+ ions occurred at 150 ppm Pb2+ ion concentration, pH 5, 90 minutes of contact time, and an adsorption capacity of 149.95 mg/g at 35 °C. The dominant adsorption isotherm model is the Langmuir isotherm model with R2 = 0.9867 and follows the pseudo-second-order. The selectivity test showed that Cr-PTC-HIna-SC MOF could adsorb more Cd2+ ions than Pb2+ ions, with 250 mg/g being the best amount.