Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : ad-Dawaa : Journal of Pharmaceutical Sciences

Aaptamine Enhanced Doxorubicin Activity on B-Cell Lymphoma 2 (Bcl-2): A Multi-Structural Molecular Docking Study Setiawansyah, Arif; Susanti, Gita; Alrayan, Reza; Hadi, Ismanurrahman; Ikhlas Arsul, Muhammad; Luthfiana, Dewi; Wismayani, Leni; Hidayati, Nurul
Ad-Dawaa: Journal of Pharmaceutical Sciences Vol. 7 No. 1 (2024)
Publisher : Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/djps.v7i1.46796

Abstract

Doxorubicin, a widely used chemotherapeutic agent, targets Bcl-2, but its efficacy can be limited by drug resistance. Its combination with natural derived compound can be a therapeutic approach to overcome this problem. This study aimed to investigate the molecular interactions and binding affinities of aaptamine and doxorubicin with Bcl-2 using molecular docking simulations, and to evaluate the potential synergistic effects of their combination. Molecular docking studies were performed to predict the binding modes and affinities of aaptamine and doxorubicin along with their combination to Bcl-2. Molecular docking simulation results showed that aaptamine binds to the BH3 binding groove of Bcl-2, forming key interactions with residues like Asp70, Tyr67, Phe112 and Glu111. Aaptamine stabilized the binding of doxorubicin to Bcl-2 through hydrophobic bonding and van der Waals interactions, resulting in enhanced binding affinity. The combination of aaptamine and doxorubicin exhibits synergistic anticancer effects by enhancing the binding affinity of doxorubicin to Bcl-2. Molecular docking simulations provided insights into the stabilizing interactions between aaptamine, doxorubicin, and Bcl-2, suggesting a potential strategy for overcoming Bcl-2-mediated drug resistance in cancer. However, further in vitro investigation is needed to be implemented.
Integrating The Network Pharmacology and Molecular Docking to Uncover The Potential Mechanism Of Rutin In Fighting Diabetes Mellitus Putri, Stella Anatasya Putri; Maharani, Andi Rani Gustia; Luthfiana, Dewi; Nweze, Leonard Chinecherem; Setiawansyah, Arif; Susanti, Gita; Doloking, Haeria
Ad-Dawaa: Journal of Pharmaceutical Sciences Vol. 7 No. 1 (2024)
Publisher : Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/djps.v7i1.49701

Abstract

Introduction: Rutin is a flavonol glycoside that is known to have blood sugar reducing activity. However, its molecular mechanism in reducing blood sugar level remains unclear. This study was employed to elucidate the pharmacological mechanism of rutin as antidiabetic agent. Methods: Potential target of rutin was screened in relevant databases to construct a compound-target network. Network pharmacology was utilized to identify targets associated with disease, gene ontology and KEGG pathways and confirmed its potential binding affinity using Autodock 4.2 assisted by ADT interface. Result: The result highlighted mTor, PIK3R1, and NFKB1R as a potential target of Rutin through network pharmacology. This target involved in the insulin signaling pathways, insulin resistance, type 2 diabetes mellitus, B receptor signaling pathways, AGE-RAGE signaling pathway in diabetic complications and pancreatic cancer. All docking protocols were valid with RMSD value for TNF-a, NF-KB, PI3K were 0.72 Å, 0.67 Å, ​​and 0.54 Å, respectively. The molecular docking has confirmed the potential mechanism of rutin as antidiabetic agent by stably bound with these proteins with estimated free binding energy values of -8.54 kcal/mol (NF-KB), -8.01 kcal/mol (PI3K), and -6.22 kcal/mol (TNF-a). Conclusion: The study has given insight into the molecular mechanism of rutin in the management of DM by stably bound with NF-KB, TNF-a, and PI3K. However, further laboratory experimental research is needed, particularly in vitro and in vivo assay