Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Jurnal Teknik Mesin Mechanical Xplore

Ethanol additive addition to gasoline: viscosity investigation using stokes law linear regression Taufik Ulhakim, Muhamad; Karina Chintya, Lestari; Suhara, Ade; Bertolomeus Haryanto, Agung; Ummah, Auliya Rahmatul; Nur, Arip Syaripudin
Jurnal Teknik Mesin Mechanical Xplore Vol 4 No 1 (2023): Jurnal Teknik Mesin Mechanical Xplore (JTMMX)
Publisher : Mechanical Engineering Department Universitas Buana Perjuangan Karawang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36805/jtmmx.v4i1.5612

Abstract

Nowadays, global warming is a tremendous phenomena in the world. Every country trying to solve these conditions, including Indonesia that has a campaign to reduce the emission of CO and HC from vehicles. However, the number of vehicles is increasing every year. Based on that condition, the researchers are trying to modify the fuel with the additive. This work modified the gasoline with 10% ethanol additive addition and investigated the viscosity properties using Stokes law linear regression method and compared to pure gasoline. The viscosity properties are chosen by their effect on emission of vehicles. A low viscosity of fuel can reduce CO and HC in gas emission. Then, this work was finding that the viscosity of gasoline is decreased, but 10% of ethanol does not significantly change the characteristics of gasoline. Even so, the linear regression has successfully used as an analyzed method to determined the viscosity. Then, this finding also contributes to development of fuel in Indonesia to reduce the emission of CO and HC with the modified of gasoline using ethanol in the other concentration.
The Photovoltaic Performance based on Radiation Intensity Examination using Experimental Study and Thermal Simulation Prasetyo, Singgih Dwi; Taufik Ulhakim, Muhamad
Jurnal Teknik Mesin Mechanical Xplore Vol 4 No 2 (2024): Jurnal Teknik Mesin Mechanical Xplore (JTMMX)
Publisher : Mechanical Engineering Department Universitas Buana Perjuangan Karawang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36805/jtmmx.v4i2.6141

Abstract

Solar energy is a renewable energy source that can be converted into electrical energy through photovoltaic (PV) solar cells. However, the efficiency is low, with only 15-20% depending on solar irradiation converted into electricity. The angle of the sun and the structural position of the solar cell system also affect the amount of solar radiation received. Research has been carried out to determine the effect of radiation intensity on the performance of PV solar cells using experimental methods and thermal simulation. The temperature distribution of PV cells has been studied using experimental studies and thermal simulations. The highest temperature was produced at a solar radiation intensity of 1100 W/m2 of 68.4 ⸰C for the experimental study and 69.4 ⸰C for the thermal simulation study. The highest efficiency is produced at a radiation intensity of 1000 W/m2, with the highest efficiency being 11.5%. This study analyzes the impact of radiation intensity on the electrical efficiency of solar PV cells using two-way ANOVA. The radiation intensity has a P-value of 1.85E-05, which indicates an influence on the electricity produced. There is an MS value of research variation smaller than the MS error of 7.22E-07, indicating an interaction between the two variables
Progressive Dies for L-hanger Ducting (L-HD) Utilizing Low-Carbon Steel SPCC-SD Material: An Experimental and Numerical Analysis Budiansyah, Ade Cepi; Taufik Ulhakim, Muhamad; Sukarman, Sukarman; Supriyanto, Agus; Amir, Amir; Mulyadi, Dodi; Khoirudin, Khoirudin
Jurnal Teknik Mesin Mechanical Xplore Vol 5 No 1 (2024): Jurnal Teknik Mesin Mechanical Xplore (JTMMX)
Publisher : Mechanical Engineering Department Universitas Buana Perjuangan Karawang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36805/jtmmx.v5i1.7763

Abstract

Industrial developments, especially in the manufacturing and construction sectors, recognize L-hanger ducting as a critical component in HVAC (heating ventilation and air conditioning) ducting systems, which play a role in supporting and stabilizing air ducts. The L-Hanger ducting manufacturing process involves a series of stages, such as shearing, blanking, piercing, trimming, and bending processes. This research focuses on the design and simulation of dies and punches for piercing, blanking, and bending processes using 1.6 mm-thick SPCC-SD material. The aim of this research is to design and analyze progressive dies in order to increase the efficiency of the production process. A comprehensive calculation of the forces involved in the shearing, blanking, piercing, trimming, and bending processes is required in order to predict press machine tonnage requirements to support the production process. This research applies theoretical and numerical validation approaches. Theoretical analysis is used to calculate the overall forces, which are then compared with numerical results and verified through an experimental approach. By understanding and optimizing the design of progressive dies, it is hoped that we can increase the production efficiency of L-hanger Ducting and expand knowledge in the field of metal forming, contributing to the metal forming industry and supporting the development of science.