Claim Missing Document
Check
Articles

Found 2 Documents
Search

DAMPAK HASIL PELEDAKAN DENGAN DETONATOR ELEKTRONIK MENGGUNAKAN METODE SEGMENTASI DAN NON-SEGMENTASI Handayana, Raden Haris; Alghifari, Mohamad Rifki; Salahudin, Sani; Carlo, Nasfryzal
Indonesian Mining Journal Vol 26 No 2 (2023): Indonesian Mining Journal, October 2023
Publisher : Balai Besar Pengujian Mineral dan Batubara tekMIRA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30556/imj.Vol26.No2.2023.1488

Abstract

Sebuku Tanjung Coal, a mining company, has a blasting location close tobuilding structures. This building is included in the Class 2 building on SNI 7571:2010 with a maximum peak vector sum (PVS) value of 3 mm/s or peak particle velocity (PPV) value of 3 - 7 mm/s at the frequency of 0-100 Hz. Several critical areas are located between 200 and 700 meters from the blasting location. The used initiation system is Hanwha Electronic Blasting System 2nd Generation (HEBS II), which uses HiMex 70 (emulsion) as an explosive type. In this paper, the tie-up design of blasting uses segment and non-segment methods to compare the results of blasting using the two methods. Based on 16 compared data points, the vibration results obtained using segment and non-segment had a value range of 2,767-15,102 mm/s. The average result of the digging time using the segment method is 10.9 seconds, while the non-segment method takes 10.3 seconds. The average size of fragmentation (D80) with the segment method is 49.1 cm, while the non-segment method is 45.4 cm.
KAJIAN BATU TERBANG UNTUK MENENTUKAN JARAK AMAN MINIMUM PELEDAKAN LAPISAN PENUTUP BATUBARA TERHADAP WILAYAH PERMUKIMAN Handayana, Raden Haris; Shodik, Fajar; Salahudin, Sani
Indonesian Mining Journal Vol 26 No 2 (2023): Indonesian Mining Journal, October 2023
Publisher : Balai Besar Pengujian Mineral dan Batubara tekMIRA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30556/imj.Vol26.No2.2023.1498

Abstract

Fly rock is a rock fragmentation that is thrown as a result of blasting. Such fragmentation that is thrown beyond the specified safe distance can cause a damage to the infrastructure, mechanical equipment and humans. This study aims to determine the safe radius of the fly rock that resulting from blasting residential area which that has a distance 200-300 m and has potentially distressing to cause damage. Calculating of the flying rock throwing distance is carried out theoretically and actually with orientation to the distance between spaces, the distance between burdens, minimum stemming height, minimum hole depth, powder factor, average charge blast hole and distance initial burdens. For theoretical calculations, the save distance is calculated by empirical methods and dimensional analysis. Results of the study shows that the maximum distance of the actual fly rock throw is 05.31 m and based on the predictions using the Cratering Method, the maximum distance of fly rocks is 172 m with a safety factor of 2 and the maximum distance of fly rocks is 199.04 m with a safety factor of 2. Based on the actual and predicted data above, it is not safe for blasting locations that is less than 200 m from residential areas, that refers to the safe radius threshold based on the regulation of the Minister of Energy and Mineral Resources No. 1827 K/30/MEM/2018.